Accelerated acquisition in pure-shift spectra based on prior knowledge from 1H NMR.

Pure-shift NMR enhances spectral resolution, but the optimal resolution can only be obtained at the cost of acquisition time. We propose to accelerate pure-shift acquisition using optimised 'burst' non-uniform sampling schemes [I. E. Ndukwe, A. Shchukina, K. Kazimierczuk and C. P. Butts, Chem. Commun., 2016, 52, 12769] and then reconstruct the undersampled signal mathematically. Here, we focus on the reliability of this reconstruction depending on the sampling scheme and present a workflow for the sampling optimization. It is ready to be implemented in routine measurements and yields a great improvement in reconstruction of challenging cases.

[1]  S. Hyberts,et al.  Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. , 2010, Journal of the American Chemical Society.

[2]  Iddo Drori,et al.  Fast Minimization by Iterative Thresholding for Multidimensional NMR Spectroscopy , 2007, EURASIP J. Adv. Signal Process..

[3]  Michał Nowakowski,et al.  Pitfalls in compressed sensing reconstruction and how to avoid them , 2017, Journal of biomolecular NMR.

[4]  J. Creyghton,et al.  Application of linear prediction and singular value decomposition (LPSVD) to determine NMR frequencies and intensities from the FID , 1985, Magnetic resonance in medicine.

[5]  K. Kazimierczuk,et al.  Enabling Fast Pseudo-2D NMR Spectral Acquisition for Broadband Homonuclear Decoupling: The EXACT NMR Approach. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  A. Stern,et al.  A new approach to compressed sensing for NMR , 2015, Magnetic resonance in chemistry : MRC.

[7]  T. Parella,et al.  Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications , 2015, Magnetic resonance in chemistry : MRC.

[8]  Mathias Nilsson,et al.  Ultrahigh-Resolution NMR Spectroscopy , 2014, Angewandte Chemie.

[9]  L. Gladden,et al.  Fast multidimensional NMR spectroscopy using compressed sensing. , 2011, Angewandte Chemie.

[10]  S. Tan,et al.  Use of CLEAN in conjunction with selective data sampling for 2D NMR experiments , 1988 .

[11]  C. Jaroniec,et al.  Nmrglue: an open source Python package for the analysis of multidimensional NMR data , 2013, Journal of biomolecular NMR.

[12]  J. Herzfeld,et al.  Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. , 2009, Journal of the American Chemical Society.

[13]  M. Mobli,et al.  Framework for and evaluation of bursts in random sampling of multidimensional NMR experiments. , 2019, Journal of magnetic resonance.

[14]  Gerhard Wagner,et al.  Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling , 2012, Journal of Biomolecular NMR.

[15]  V. Orekhov,et al.  Accelerated NMR spectroscopy by using compressed sensing. , 2011, Angewandte Chemie.

[16]  V. Orekhov,et al.  Non‐uniform sampling: post‐Fourier era of NMR data collection and processing , 2015, Magnetic resonance in chemistry : MRC.

[17]  Phillip C Aoto,et al.  Accurate scoring of non-uniform sampling schemes for quantitative NMR. , 2014, Journal of magnetic resonance.

[18]  K. Zangger,et al.  Pure shift NMR. , 2015, Progress in nuclear magnetic resonance spectroscopy.

[19]  S. Hyberts,et al.  Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy , 2017, Journal of Biomolecular NMR.

[20]  K. Kazimierczuk,et al.  EXtended ACquisition Time (EXACT) NMR-A Case for 'Burst' Non-Uniform Sampling. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  M. Foroozandeh,et al.  Anatomising Proton NMR Spectra with Pure Shift 2D J-Spectroscopy: A Cautionary Tale , 2017 .

[22]  K. Kazimierczuk,et al.  Rapid and safe ASAP acquisition with EXACT NMR. , 2016, Chemical communications.