On one generalization of LRC codes with availability

We investigate one possible generalization of locally recoverable codes (LRC) with all-symbol locality and availability when recovering sets can intersect in a small number of coordinates. This feature allows us to increase the achievable code rate and still meet load balancing requirements. In this paper we derive an upper bound for the rate of such codes and give explicit constructions of codes with such a property. These constructions utilize LRC codes developed by Wang et al.

[1]  Itzhak Tamo,et al.  Bounds on the Parameters of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[2]  Simon Litsyn,et al.  Upper bounds on the rate of LDPC codes as a function of minimum distance , 2002, IEEE Transactions on Information Theory.

[3]  Arya Mazumdar,et al.  Bounds on the Size of Locally Recoverable Codes , 2015, IEEE Transactions on Information Theory.

[4]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[5]  Zhifang Zhang,et al.  Repair Locality With Multiple Erasure Tolerance , 2014, IEEE Transactions on Information Theory.

[6]  Sriram Vishwanath,et al.  Optimal Locally Repairable and Secure Codes for Distributed Storage Systems , 2012, IEEE Transactions on Information Theory.

[7]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[8]  Paul H. Siegel,et al.  Linear locally repairable codes with availability , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[9]  Alexey A. Frolov,et al.  Bounds and constructions of codes with all-symbol locality and availability , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[10]  Cheng Huang,et al.  Explicit Maximally Recoverable Codes With Locality , 2013, IEEE Transactions on Information Theory.

[11]  Balaji Srinivasan Babu,et al.  Bounds on the rate and minimum distance of codes with availability , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[12]  P. Vijay Kumar,et al.  Codes with locality for two erasures , 2014, 2014 IEEE International Symposium on Information Theory.

[13]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[14]  Anyu Wang,et al.  Achieving arbitrary locality and availability in binary codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[15]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[16]  Shubhangi Saraf,et al.  Locally Decodable Codes , 2016, Encyclopedia of Algorithms.

[17]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[18]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.