Performance of convolutional coded dual header pulse interval modulation in infrared links

The paper presents analysis and simulation for the convolutional coded DH-PIM using 1⁄2 convolutional code with the constraint length of 3. Decoding is implemented using the Viterbi algorithm. The proposed scheme is simulated for a constraint length of 7 and the results are compared with a number of different modulation techniques. DH-PIM with convolutional coding requires about 4-5 dB lower SNR for a given slot error rate compared with the un-coded DH-PIM.

[1]  Andrew Robert Hayes,et al.  Digital pulse interval modulation for indoor optical wireless communication systems , 2002 .

[2]  George C. Giakos,et al.  A novel multipath light signal dispersion reduction technique based on controlled-polarization optical wireless link setup , 2005, IEEE Transactions on Instrumentation and Measurement.

[3]  Zabih Ghassemlooy,et al.  Error performance of dual header pulse interval modulation (DH-PIM) in optical wireless communications , 2001 .

[4]  Peter Sweeney Error Control Coding , 1991 .

[5]  V.W.S. Chan,et al.  Principles of Digital Communication and Coding , 1979 .

[6]  Jeffrey B. Carruthers,et al.  Wireless infrared communications , 2003, Proc. IEEE.

[7]  Zabih Ghassemlooy,et al.  Performance of DH-PIM employing equalisation for diffused infrared communications , 2005 .

[8]  Allen H. Levesque,et al.  Error-control techniques for digital communication , 1985 .

[9]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[10]  D. R. Wisely,et al.  Optical wireless: the story so far , 1998, IEEE Commun. Mag..

[11]  D.C.M. Lee,et al.  Trellis-coded pulse-position modulation for indoor wireless infrared communications , 1997, IEEE Trans. Commun..

[12]  Erik Agrell,et al.  Fiber communications using convolutional coding and bandwidth-efficient modulation. , 2006, Optics express.

[13]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.