Advantages of mixing bioinformatics and visualization approaches for analyzing sRNA-mediated regulatory bacterial networks

The revolution in high-throughput sequencing technologies has enabled the acquisition of gigabytes of RNA sequences in many different conditions and has highlighted an unexpected number of small RNAs (sRNAs) in bacteria. Ongoing exploitation of these data enables numerous applications for investigating bacterial transacting sRNA-mediated regulation networks. Focusing on sRNAs that regulate mRNA translation in trans, recent works have noted several sRNA-based regulatory pathways that are essential for key cellular processes. Although the number of known bacterial sRNAs is increasing, the experimental validation of their interactions with mRNA targets remains challenging and involves expensive and time-consuming experimental strategies. Hence, bioinformatics is crucial for selecting and prioritizing candidates before designing any experimental work. However, current software for target prediction produces a prohibitive number of candidates because of the lack of biological knowledge regarding the rules governing sRNA–mRNA interactions. Therefore, there is a real need to develop new approaches to help biologists focus on the most promising predicted sRNA–mRNA interactions. In this perspective, this review aims at presenting the advantages of mixing bioinformatics and visualization approaches for analyzing predicted sRNA-mediated regulatory bacterial networks.

[1]  Mario Cannataro,et al.  Visualization of protein interaction networks: problems and solutions , 2013, BMC Bioinformatics.

[2]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[3]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[4]  D. Young,et al.  Identification of small RNAs in Mycobacterium tuberculosis , 2009, Molecular microbiology.

[5]  R. Backofen,et al.  Computational prediction of sRNAs and their targets in bacteria , 2010 .

[6]  Ludovic Cottret,et al.  Metabolic network visualization eliminating node redundance and preserving metabolic pathways , 2007, BMC Systems Biology.

[7]  Reinhold Brückner,et al.  Small regulatory RNAs from low-GC Gram-positive bacteria , 2014, RNA biology.

[8]  J. Vogel,et al.  Pervasive post‐transcriptional control of genes involved in amino acid metabolism by the Hfq‐dependent GcvB small RNA , 2011, Molecular microbiology.

[9]  Thomas R. Gingeras,et al.  An effort to make sense of antisense transcription in bacteria , 2012, RNA biology.

[10]  Derek Ruths,et al.  On the contributions of topological features to transcriptional regulatory network robustness , 2012, BMC Bioinformatics.

[11]  R. Sorek,et al.  Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity , 2010, Nature Reviews Genetics.

[12]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[13]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[14]  Andrew Camilli,et al.  A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae , 2011, PLoS pathogens.

[15]  Chase L. Beisel,et al.  Base pairing small RNAs and their roles in global regulatory networks. , 2010, FEMS microbiology reviews.

[16]  H. Ochman,et al.  Genome-wide detection of novel regulatory RNAs in E. coli. , 2011, Genome research.

[17]  Hakim Tafer,et al.  RNAplex: a fast tool for RNA-RNA interaction search , 2008, Bioinform..

[18]  Ludovic Cottret,et al.  Systrip: A Visual Environment for the Investigation of Time-series Data in the Context of Metabolic Networks , 2012, 2012 16th International Conference on Information Visualisation.

[19]  I. Nookaew,et al.  Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods , 2013, Nucleic acids research.

[20]  Romain Bourqui,et al.  Genome-wide detection of sRNA targets with rNAV , 2013, 2013 IEEE Symposium on Biological Data Visualization (BioVis).

[21]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[22]  Diogo M. Camacho,et al.  Functional characterization of bacterial sRNAs using a network biology approach , 2011, Proceedings of the National Academy of Sciences.

[23]  Jan Gorodkin,et al.  RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model , 2012, Bioinform..

[24]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[25]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[26]  Hiroaki Kitano,et al.  CellDesigner: a process diagram editor for gene-regulatory and biochemical networks , 2003 .

[27]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[28]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[29]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[30]  Marc-Thorsten Hütt,et al.  Organization of Excitable Dynamics in Hierarchical Biological Networks , 2008, PLoS Comput. Biol..

[31]  H. Margalit,et al.  Accessibility and Evolutionary Conservation Mark Bacterial Small-RNA Target-Binding Regions , 2011, Journal of bacteriology.

[32]  Christopher J. Rawlings,et al.  Graph-based sequence annotation using a data integration approach , 2008, J. Integr. Bioinform..

[33]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[34]  Rolf Backofen,et al.  IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions , 2008, Bioinform..

[35]  Tamara Munzner,et al.  Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context , 2008, IEEE Transactions on Visualization and Computer Graphics.

[36]  Kaizhong Zhang,et al.  RNA-RNA Interaction Prediction and Antisense RNA Target Search , 2006, J. Comput. Biol..

[37]  Romain Bourqui,et al.  Visualizing Temporal Dynamics at the Genomic and Metabolic Level , 2009, 2009 13th International Conference Information Visualisation.

[38]  Martin Vingron,et al.  Ontologizer 2.0 - a multifunctional tool for GO term enrichment analysis and data exploration , 2008, Bioinform..

[39]  A. Condon,et al.  Secondary structure prediction of interacting RNA molecules. , 2005, Journal of molecular biology.

[40]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[41]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[42]  David James Sherman,et al.  ProViz: protein interaction visualization and exploration , 2005, Bioinform..

[43]  Stan J. J. Brouns,et al.  Planting the seed: target recognition of short guide RNAs. , 2014, Trends in microbiology.

[44]  Christophe Pichon,et al.  Small RNA gene identification and mRNA target predictions in bacteria , 2008, Bioinform..

[45]  Yibo Wu,et al.  GOSemSim: an R package for measuring semantic similarity among GO terms and gene products , 2010, Bioinform..

[46]  Benno Schwikowski,et al.  Graph-based methods for analysing networks in cell biology , 2006, Briefings Bioinform..

[47]  Falk Schreiber,et al.  Integration of -omics data and networks for biomedical research with VANTED , 2010, J. Integr. Bioinform..

[48]  Pascale Cossart,et al.  Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets , 2007, Nucleic acids research.

[49]  F. Repoila,et al.  Small noncoding RNAs controlling pathogenesis. , 2007, Current opinion in microbiology.

[50]  Vladimir Batagelj,et al.  Pajek - Analysis and Visualization of Large Networks , 2001, Graph Drawing Software.

[51]  Franziska Mika,et al.  Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella , 2013, International journal of molecular sciences.

[52]  É. Massé,et al.  New insights into small RNA-dependent translational regulation in prokaryotes. , 2013, Trends in genetics : TIG.

[53]  W. Pearson Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. , 1991, Genomics.

[54]  Ralf Zimmer,et al.  Rigorous assessment of gene set enrichment tests , 2012, Bioinform..

[55]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[56]  Masaru Tomita,et al.  Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli , 2011, BMC Genomics.

[57]  Ravi Iyengar,et al.  AVIS: AJAX viewer of interactive signaling networks , 2007, Bioinform..

[58]  Igor Jurisica,et al.  NAViGaTOR: Network Analysis, Visualization and Graphing Toronto , 2009, Bioinform..

[59]  Jos Vanderleyden,et al.  Small RNAs regulating biofilm formation and outer membrane homeostasis , 2013, RNA biology.

[60]  P. Romby,et al.  An overview of RNAs with regulatory functions in gram-positive bacteria , 2009, Cellular and Molecular Life Sciences.

[61]  D. Pervouchine IRIS: intermolecular RNA interaction search. , 2004, Genome informatics. International Conference on Genome Informatics.

[62]  G. Storz,et al.  Regulation by small RNAs in bacteria: expanding frontiers. , 2011, Molecular cell.

[63]  Jing Zhu,et al.  GO-function: deriving biologically relevant functions from statistically significant functions , 2012, Briefings Bioinform..

[64]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[65]  Brian Tjaden Computational identification of sRNA targets. , 2012, Methods in molecular biology.

[66]  Romain Bourqui,et al.  Pathway Preserving Representation of Metabolic Networks , 2011, Comput. Graph. Forum.

[67]  Yuan Cao,et al.  sRNATarBase: a comprehensive database of bacterial sRNA targets verified by experiments. , 2010, RNA.

[68]  Andreas Tauch,et al.  CoryneRegNet 3.0--an interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli. , 2007, Journal of biotechnology.

[69]  David Bryant,et al.  DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists , 2007, Nucleic Acids Res..

[70]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[71]  Mark A. Ragan,et al.  Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes , 2012, Genome biology and evolution.

[72]  Irmtraud M. Meyer,et al.  Predicting novel RNA-RNA interactions. , 2008, Current opinion in structural biology.

[73]  Timothy R. Hughes,et al.  Considerations in the identification of functional RNA structural elements in genomic alignments , 2007, BMC Bioinformatics.

[74]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[75]  G. Storz,et al.  Bacterial small RNA regulators: versatile roles and rapidly evolving variations. , 2011, Cold Spring Harbor perspectives in biology.