Young's double-slit interference observation of hot electrons in semiconductors.

We have carried out Young's double-slit experiment for the hot-electron wave in man-made semiconductor structures with a 25-nm-space double slit in an InP layer buried within GaInAs, a 190-nm-thick GaInAsP hot-electron wave propagation layer, and a collector array of 80 nm pitch. At 4.2 K, dependences of the collector current on the magnetic field were measured and found to agree clearly with the double-slit interference theory. The present results show evidence for the wave front spread of hot electrons using the three-dimensional state in materials, for the first time, and the possibility of using top-down fabrication techniques to achieve quantum wave front control in materials.

[1]  G. Strasser,et al.  Measuring the energetic distribution of ballistic electrons after their refraction at an Au–GaAs interface , 2002 .

[2]  G. Strasser,et al.  Wannier-Stark states in finite superlattices. , 2002, Physical review letters.

[3]  F. Mollot,et al.  Experimental study of hot electron inelastic scattering rate in p-type InGaAs , 2002 .

[4]  R. M. Westervelt,et al.  Coherent branched flow in a two-dimensional electron gas , 2000, Nature.

[5]  Y. Miyamoto,et al.  Fabrication and transport properties of 50-nm-wide Au/Cr/GaInAs electrode for electron wave interference device , 2000 .

[6]  D. Ritchie,et al.  Imaging diffraction-limited electronic collimation from a non-equilibrium one-dimensional ballistic constriction , 2000 .

[7]  Buhmann,et al.  Probing the potential landscape inside a two-dimensional electron Gas , 1999, Physical review letters.

[8]  T. Hattori,et al.  25 nm pitch GaInAs/InP buried structure: Improvement by calixarene as an electron beam resist and tertiarybutylphosphine as a P source in organometallic vapor phase epitaxy regrowth , 1998 .

[9]  Y. Miyamoto,et al.  Influence of a finite energy width on the hot electron double-slit interference experiment: A design of the emitter structure , 1997 .

[10]  M. Suhara,et al.  A 40-NM-PITCH DOUBLE-SLIT EXPERIMENT OF HOT ELECTRONS IN A SEMICONDUCTOR UNDER A MAGNETIC FIELD , 1997 .

[11]  Kazuhito Furuya Kazuhito Furuya,et al.  Wavefront Spread of Hot Electrons Generated by Planer Tunnel Emitters , 1995 .

[12]  Y. Miyamoto,et al.  Ultrafine Fabrication Technique for Hot Electron Interference/Diffraction Devices , 1994 .

[13]  Hong,et al.  Interference and dephasing by electron-electron interaction on length scales shorter than the elastic mean free path. , 1991, Physical review letters.

[14]  K. Furuya COHERENT ELECTRON DEVICES , 1991 .

[15]  C. E. Timmering,et al.  Electron-beam collimation with a quantum point contact. , 1990, Physical review. B, Condensed matter.

[16]  K. Furuya Possibility of high-speed device on electron wave principle , 1989 .

[17]  Y. Miyamoto,et al.  Wet Chemical Etching for Ultrafine Periodic Structure: Rectangular InP Corrugations of 70 nm Pitch and 100 nm Depth , 1989 .

[18]  T. Ishibashi,et al.  A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure , 1988 .

[19]  K. Furuya Novel high‐speed transistor using electron‐wave diffraction , 1987 .

[20]  S. Hiyamizu,et al.  InGaAs/InAlGaAs hot-electron transistors with current gain of 15 , 1986 .

[21]  G. J. Davies,et al.  One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction , 1986 .

[22]  W. Wiegmann,et al.  Hot electron spectroscopy of GaAs , 1985 .

[23]  S. Hiyamizu,et al.  Tunneling Hot Electron Transistor Using GaAs/AlGaAs Heterojunctions , 1984 .

[24]  Yutaka Sugita,et al.  Observation of Aharonov-Bohm effect by electron holography , 1982 .

[25]  M. Heiblum Tunneling hot electron transfer amplifiers (theta): Amplifiers operating up to the infrared , 1981 .

[26]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .