The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt Review and preface to the Thematic Issue

Abstract The Iberian Pyrite Belt (IPB) has, over the past decade, been an area of renewed mining activity and scientific research that has resulted in a wealth of new data and new geological and metallogenic concepts that are succinctly presented in this Thematic Issue. The reason for this interest in the IPB, which forms part of the Hercynian orogenic belt, is that its Late Devonian to Middle Carboniferous rocks host a huge quantity of volcanic-hosted massive sulphide (VMS) mineralization (1700 Mt of sulphides, totalling 14.6 Mt Cu, 13.0 Mt Pb, 34.9 Mt Zn, 46100 t Ag and 880 t Au). The mineralization and its environment display a number of typical signatures that can be related to the mineralogy and zoning of the sulphide orebodies, to the lead isotopes of the mineralization, to the geochemical and mineralogical variations in the hydrothermal alteration halos surrounding the orebodies, to the geochemical characteristics of the bimodal volcanics hosting the VMS, to the complex structural evolution during the Hercynian orogeny, to the presence of palaeofaults and synsedimentary structures that acted as channels and discharge traps for the metalliferous fluids, and to the gossans developed over VMS. Discriminant geological criteria have been deduced for each domain which can be helpful in mineral exploration, complementing the more traditional prospecting techniques. Although the question of the IPB's geodynamic setting is still under debate, any interpretation must now take into account some incontrovertible constraints: for example, the geochemical characteristics of a large part of the basic lavas are comparable to those of mantle-derived basalts emplaced in extensional tectonic settings, and the associated acidic rocks were produced by melting of a basic crustal protolith at low- to medium-pressures and a steep geothermal gradient, thus, the sulphide-bearing volcano-sedimentary sequence differs strongly from recent arc-related series. It is considered here that the tectonic setting was extensional and epicontinental and that it developed during the Hercynian plate convergence, that culminated in thin-skinned deformation and accretion of the South Portuguese terrane to the Iberian Paleozoic continental block.Resumen (translated by E. Pascual) Durante la década pasada, la Faja Pirítica Ibérica (FPI) ha sido un área de actividad minera e investigación cientifica renovadas, lo que ha conducido a la obtención de nuevos datos y conceptos geológicos y metalogénicos, que se exponen sucintamente en este Número Especial. La razón de este interés en la FPI, que forma parte del cinturón orogénico hercínico, es que sus rocas, cuyas edades abarcan desde el Devónico tardío al Carbonífero Medio, albergan una enorme cantidad de mineralizaciones de sulfuros masivos ligados a vulcanismo (1700 millones de toneladas de sulfuros, que totalizan 14,6 Mt de Cu, 13,0 Mt de Pb, 34,9 Mt de Zn, 46100 toneladas de Ag y 880 toneladas de Au). Las mineralizaciones y su entorno muestran signaturas que se pueden relacionar con la mineralogía y la zonación de las masas de sulfuros, con los isótopos de plomo de la mineralización, con las variaciones en los halos de alteración hidrotermal alrededor de las mineralizaciones, con los caracteres geoquímicos de las rocas volcánicas bimodales que albergan los sulfuros masivos, con la compleja evolución tectónica del conjunto durante la orogenia hercínica, con la existencia de paleofallas y estructuras sinsedimentarias que actuaron como canales y trampas de descarga para los fluidos metalíferos y los gossans que se desarrollaron sobre los sulfuros. Se han deducido criterios geológicos discriminantes para cada área de conocimiento, que pueden ser útiles para la exploración minera, complementando las técnicas más tradicionales de prospección. Aunque la cuestión del entorno geodinámico de la FPI todavía es materia de debate, cualquier interpretación tiene que tener ahora en cuenta algunas restricciones incontrovertibles: por ejemplo, los caracteres geoquímicos de una gran parte de las rocas básicas son comparables a los de basaltos derivados del manto y emplazados en entornos tectónicos extensionales, y las rocas ácidas asociadas se produjeron a partir de un protolito cortical básico, a presiones bajas o intermedias y asociadas a un abrupto gradiente térmico. Por consiguiente, la secuencia vulcanosedimentaria que contiene los sulfuros masivos difiere claramente de las series recientes relacionadas con entornos de arco. Consideramos aquí que el entorno tectónico fue extensional y epicontinental y que tuvo lugar durante la convergencia de placas hercínica, que culminó en deformación “thin-skinned” y acreción del terreno constituído por la Zona Sudportuguesa al bloque continental paleozoico ibérico.

[1]  M. Orozco,et al.  The southern Iberian shear zone: a major boundary in the Hercynian folded belt , 1988 .

[2]  P. Thurston,et al.  Rare earth elements in volcanic rocks associated with Cu–Zn massive sulphide mineralization: a preliminary report , 1982 .

[3]  F. Barriga Hydrothermal Metamorphism And Ore Genesis At Aljustrel, Portugal , 1983 .

[4]  Y. Moëlo,et al.  Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt , 1996 .

[5]  C. Moreno Postvolcanic Paleozoic of the Iberian Pyrite Belt: An Example of Basin Morphologic Control on Sediment Distribution in a Turbidite Basin , 1993 .

[6]  B. Ábalos,et al.  Tectonic setting of Cadomian low-pressure metamorphism in the central Ossa-Morena zone (Iberian massif, SW spain) , 1992 .

[7]  K. Kase,et al.  Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filon Norte, Tharsis Mine, Spain , 1990 .

[8]  K. Gray,et al.  Base Metal Deposits in the Iberian Pyrite Belt , 1986 .

[9]  A. J. Naldrett,et al.  Geology and metallogeny of copper deposits , 1986 .

[10]  E. Petersen Tin in volcanogenic massive sulfide deposits; an example from the Geco Mine, Manitouwadge District, Ontario, Canada , 1986 .

[11]  R. Large The gold-rich seafloor massive sulphide deposits of Tasmania , 1990 .

[12]  G. K. Taylor,et al.  Avalonian and Cadomian Geology of the North Atlantic , 1990 .

[13]  R. Darling,et al.  The Petrochemistry of Altered Volcanic Rocks Surrounding the Louvem Copper Deposit, Val d'Or, Quebec , 1975 .

[14]  I. Campbell,et al.  Trace-element geochemistry of ore-associated and barren, felsic metavolcanic rocks in the Superior Province, Canada , 1986 .

[15]  G. K. Strauss,et al.  Gold mineralisations in the SW Iberian Pyrite Belt , 1990 .

[16]  J. Burg,et al.  Variscan intracontinental deformation: The Coimbra—Cordoba shear zone (SW Iberian Peninsula) , 1981 .

[17]  A. Ribeiro,et al.  Geodynamic Evolution of the Iberian Massif , 1990 .

[18]  R. D. Dallmeyer,et al.  Pre-Mesozoic Geology of Iberia , 1991 .

[19]  P. Möller,et al.  Geochemical proximity indicators of massive sulphide mineralization in the Iberian Pyrite Belt and the East Pontic metallotect , 1983 .

[20]  W. Fyfe,et al.  Giant pyritic base-metal deposits: the example of Feitais (Aljustrel, Portugal) , 1988 .

[21]  D. Carvalho A Case History of the Neves-Corvo Massive Sulfide Deposit, Portugal, and Implications for Future Discoveries , 1991 .

[22]  R. Kerrich,et al.  Sea water basalt interaction in spilites from the Iberian Pyrite Belt , 1980 .

[23]  H. Gibson,et al.  A comparison of the Horne volcanogenic massive sulfide deposit and intracauldron deposits of the Mine Sequence, Noranda, Quebec , 1993 .

[24]  E. Marcoux Lead isotope systematics of the giant massive sulphide deposits in the Iberian Pyrite Belt , 1997 .

[25]  Y. Deschamps,et al.  Chert in the Iberian Pyrite Belt , 1997 .

[26]  B. Spiro,et al.  The Filon Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulphide in a thin-skinned tectonic belt , 1997 .

[27]  B. Ábalos Variscan shear-zone deformation of late Precambrian basement in SW Iberia: implications for circum-Atlantic pre-Mesozoic tectonics , 1992 .

[28]  C. Quesada,et al.  A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt , 1997 .

[29]  J. Andrews,et al.  Middle to Upper Devonian mélanges in SW Spain and their relationship to the Meneage Formation in south Cornwall , 1990 .

[30]  A. C. Brown,et al.  Progressive alteration associated with auriferous massive sulfide bodies at the Dumagami Mine, Abitibi greenstone belt, Quebec , 1990 .

[31]  R. Sáez,et al.  Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt , 1996 .

[32]  A. G. Galley,et al.  Target vectoring using lithogeochemistry: applications to the exploration for volcanic-hosted massive sulphide deposits , 1995 .

[33]  J. Bard,et al.  Trace element geochemistry of paleozoic amphibolites from S. W. Spain , 1979 .

[34]  R. D. Dallmeyer,et al.  Terranes in the circum-Atlantic Paleozoic orogens , 1986 .

[35]  J. Munhá,et al.  Contribuição para o conhecimento geológico-petrológico da região de Santa Susana: o Complexo Vulcano-Sedimentar da Toca da Moura , 1987 .

[36]  F. Barriga,et al.  Metallogenesis in the Iberian Pyrite Belt , 1990 .

[37]  L. Sequeiros,et al.  The Basal Shaly formation of the Iberian pyrite belt (South-Portuguese zone): Early carboniferous bituminous deposits , 1989 .

[38]  Beno Rothenberg,et al.  Ancient copper mining and smelting at Chinflon (Huelva S.W. Spain) , 1980 .

[39]  D. Cassard,et al.  Geometry and genesis of feeder zones of massive sulphide deposits: constraints from the Rio Tinto ore deposit (Spain) , 1997 .

[40]  J. T. Oliveira Stratigraphy and Synsedimentary Tectonism , 1990 .

[41]  C. Quesada,et al.  Tectonothermal evolution of the Badajoz-Cordóba shear zone (SW Iberia): characteristics and 40Ar/39Ar mineral age constraints , 1994 .

[42]  M. Boogaard,et al.  Conodont faunas from Portugal and southwestern Spain Part 4. A Famennian conodont fauna near Nerva (Rio Tinto) , 1980 .

[43]  J. Madel,et al.  Geology of massive sulphide deposits in the Spanish-Portuguese Pyrite Belt , 1974 .

[44]  E. Pascual,et al.  Magmatism in the Iberian Pyrite Belt: petrological constraints on a metallogenic model , 1997 .

[45]  P. Fonseca,et al.  The Beja-Acabuches Ophiolite (Southern Iberia Variscan fold belt): Geological characterization and geodynamic significance , 1994 .

[46]  J. L. Fernández,et al.  Nuevas investigaciones y trabajos de evaluación de reservas de gossan en Minas de Riotinto , 1986 .

[47]  B. Moine,et al.  Acebuches amphibolites in the Aracena hercynian metamorphic belt (southwest Spain): Geochemical variations and basaltic affinities , 1979 .

[48]  C. Quesada,et al.  Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif , 1991 .

[49]  J. B. Silva,et al.  Structure of the South Portuguese Zone , 1983 .

[50]  Cecilio Quesada Ochoa Estructura del sector español de la Faja Pirítica: implicaciones para la exploración de yacimientos , 1996 .

[51]  L. Eguíluz,et al.  Structural and metamorphic evolution of the almaden de la plata core (Seville, Spain) in relation to syn-metamorphic shear between the Ossa-Morena and South Portuguese zones of the Iberian Variscan fold belt , 1991 .

[52]  R. Hutchinson Precious metals in massive base metal sulfide deposits , 1990 .

[53]  F. Barriga,et al.  Extreme 18O-enriched volcanics and 18O-evolved marine water, Aljustrel, Iberian Pyrite Belt: transition from high to low Rayleigh number convective regimes , 1984 .

[54]  Ross R. Large,et al.  Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models , 1992 .

[55]  J. Amorós,et al.  Jarosite: A silver bearing mineral of the gossan of Rio Tinto (Huelva) and La Union (Cartagena, Spain) , 1981 .

[56]  J. Madel,et al.  Exploration Practice for Strata-Bound Volcanogenic Sulphide Deposits in the Spanish-Portuguese Pyrite Belt: Geology, Geophysics, and Geochemistry , 1977 .

[57]  C. Quesada Precambrian successions in SW Iberia: their relationship to ‘Cadomian’ orogenic events , 1990, Geological Society, London, Special Publications.

[58]  W. Fyfe,et al.  Multi-phase water-rhyolite interaction and ore fluid generation at Aljustrel, Portugal , 1997 .

[59]  M. Boogaard,et al.  Conodont faunas from Portugal and southwestern Spain , 1972 .

[60]  R. Sáez,et al.  Evidence for catastrophism at the Famennian-Dinantian boundary in the Iberian Pyrite Belt , 1996, Geological Society, London, Special Publications.

[61]  C. Hodgson,et al.  Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec , 1980 .

[62]  A. Taube,et al.  Stratigraphy, structure, and volcanic-hosted mineralization of the Mount Windsor Subprovince, North Queensland, Australia , 1992 .

[63]  J. Munhá Hercynian magmatism in the Iberian pyrite belt , 1983 .

[64]  M. Barley A review of Archean volcanic-hosted massive sulfide and sulfate mineralization in Western Australia , 1992 .

[65]  D. Carvalho,et al.  The geochemistry of hydrothermal alteration at the Salgadinho copper deposit, Portugal , 1982 .

[66]  W. Fyfe,et al.  Adularia, the characteristic mineral of felsic spilites , 1980 .

[67]  A. Pérez-Estaún,et al.  Terranes within the Iberian Massif: Correlations with West African Sequences , 1991 .

[68]  J. Milési,et al.  Late Devonian-Early Carboniferous peak sulphide mineralization in the Western Hercynides , 1997 .

[69]  Y. Deschamps,et al.  Antithetic behaviour of gold in the volcanogenic massive sulphide deposits of the Iberian Pyrite Belt , 1997 .

[70]  C. Quesada Precambrian terranes in the Iberian Variscan Foldbelt , 1990 .

[71]  J. Santos,et al.  Magmatismo orogénico varisco no limite meridional da Zona de Ossa-Morena , 1990 .