Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion

Dynamin-related GTPase proteins (DRPs) are main players in membrane remodelling. Conserved DRPs called mitofusins (Mfn1/Mfn2/Fzo1) mediate the fusion of mitochondrial outer membranes (OM). OM fusion depends on self-assembly and GTPase activity of mitofusins as well as on two other proteins, Ugo1 and Mdm30. Here, we define distinct steps of the OM fusion cycle using in vitro and in vivo approaches. We demonstrate that yeast Fzo1 assembles into homo-dimers, depending on Ugo1 and on GTP binding to Fzo1. Fzo1 homo-dimers further associate upon formation of mitochondrial contacts, allowing membrane tethering. Subsequent GTP hydrolysis is required for Fzo1 ubiquitylation by the F-box protein Mdm30. Finally, Mdm30-dependent degradation of Fzo1 completes Fzo1 function in OM fusion. Our results thus unravel functions of Ugo1 and Mdm30 at distinct steps during OM fusion and suggest that protein clearance confers a non-cycling mechanism to mitofusins, which is distinct from other cellular membrane fusion events.

[1]  J. Shaw,et al.  A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover. , 2009, Molecular biology of the cell.

[2]  J. Nunnari,et al.  The molecular mechanism and cellular functions of mitochondrial division. , 2009, Biochimica et biophysica acta.

[3]  Rachel M. Devay,et al.  Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion , 2009, The Journal of cell biology.

[4]  J. Rubinstein,et al.  Phospholipid Association Is Essential for Dynamin-related Protein Mgm1 to Function in Mitochondrial Membrane Fusion* , 2009, The Journal of Biological Chemistry.

[5]  J. Nunnari,et al.  Mechanistic Analysis of a Dynamin Effector , 2009, Science.

[6]  Peter Walter,et al.  Supporting Online Material for An ER-Mitochondria Tethering Complex Revealed by a Synthetic Biology Screen , 2009 .

[7]  G. Hause,et al.  The a2 mating-type-locus gene lga2 of Ustilago maydis interferes with mitochondrial dynamics and fusion, partially in dependence on a Dnm1-like fission component , 2009, Journal of Cell Science.

[8]  S. Duvezin-Caubet,et al.  Distinct roles of the two isoforms of the dynamin‐like GTPase Mgm1 in mitochondrial fusion , 2009, FEBS letters.

[9]  J. Schneider,et al.  Stimulation of mRNA export by an F-box protein, Mdm30p, in vivo. , 2009, Journal of molecular biology.

[10]  A. Wittinghofer,et al.  It takes two to tango: regulation of G proteins by dimerization , 2009, Nature Reviews Molecular Cell Biology.

[11]  J. McCaffery,et al.  Mitochondrial outer and inner membrane fusion requires a modified carrier protein , 2009, The Journal of cell biology.

[12]  Gabriela Meglei,et al.  The dynamin-related protein Mgm1p assembles into oligomers and hydrolyzes GTP to function in mitochondrial membrane fusion. , 2009, Biochemistry.

[13]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[14]  K. Kito,et al.  A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F‐box protein Mdm30p , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[15]  H. McMahon,et al.  Mechanisms of membrane fusion: disparate players and common principles , 2008, Nature Reviews Molecular Cell Biology.

[16]  M. Glickman,et al.  Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. , 2008, Molecular biology of the cell.

[17]  R. Youle,et al.  Outer mitochondrial membrane protein degradation by the proteasome. , 2010, Novartis Foundation symposium.

[18]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[19]  Emily M. Coonrod,et al.  Ugo1p Is a Multipass Transmembrane Protein with a Single Carrier Domain Required for Mitochondrial Fusion , 2007, Traffic.

[20]  D. Vaux,et al.  Error bars in experimental biology , 2007, The Journal of cell biology.

[21]  J. Nunnari The machines that divide and fuse mitochondria , 2007, Annual review of biochemistry.

[22]  S. Gygi,et al.  The ubiquitin–proteasome system regulates membrane fusion of yeast vacuoles , 2007, The EMBO journal.

[23]  T. Langer,et al.  Studying proteolysis within mitochondria. , 2007, Methods in molecular biology.

[24]  Seok-Yong Choi,et al.  A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis , 2006, Nature Cell Biology.

[25]  Rachel M. Devay,et al.  Mitochondrial Inner-Membrane Fusion and Crista Maintenance Requires the Dynamin-Related GTPase Mgm1 , 2006, Cell.

[26]  T. Langer,et al.  Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. , 2006, Molecular biology of the cell.

[27]  Erik E. Griffin,et al.  Domain Interactions within Fzo1 Oligomers Are Essential for Mitochondrial Fusion* , 2006, Journal of Biological Chemistry.

[28]  T. Langer,et al.  Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1 , 2006, The Journal of cell biology.

[29]  J. Shaw,et al.  Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. , 2005, Annual review of genetics.

[30]  J. McCaffery,et al.  Dnm1 forms spirals that are structurally tailored to fit mitochondria , 2005, The Journal of cell biology.

[31]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[32]  H. McBride,et al.  Activated Mitofusin 2 Signals Mitochondrial Fusion, Interferes with Bax Activation, and Reduces Susceptibility to Radical Induced Depolarization*[boxs] , 2005, Journal of Biological Chemistry.

[33]  R. Youle,et al.  Instability of the Mitofusin Fzo1 Regulates Mitochondrial Morphology during the Mating Response of the Yeast Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[34]  K. Shokat,et al.  The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing , 2005, Cell.

[35]  T. Langer,et al.  Formation of membrane-bound ring complexes by prohibitins in mitochondria. , 2004, Molecular biology of the cell.

[36]  K. Mihara,et al.  Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity , 2004, Journal of Cell Science.

[37]  C. Herrmann,et al.  Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. , 2004, Journal of molecular biology.

[38]  J. McCaffery,et al.  Mitochondrial Fusion Intermediates Revealed in Vitro , 2004, Science.

[39]  J. McCaffery,et al.  Structural Basis of Mitochondrial Tethering by Mitofusin Complexes , 2004, Science.

[40]  R. Jensen,et al.  Ugo1p Links the Fzo1p and Mgm1p GTPases for Mitochondrial Fusion* , 2004, Journal of Biological Chemistry.

[41]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[42]  K. Mihara,et al.  Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. , 2003, Journal of biochemistry.

[43]  R. Jensen,et al.  Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. , 2003, Biochemical and biophysical research communications.

[44]  A. Reichert,et al.  Processing of Mgm1 by the Rhomboid-type Protease Pcp1 Is Required for Maintenance of Mitochondrial Morphology and of Mitochondrial DNA* , 2003, Journal of Biological Chemistry.

[45]  B. Westermann,et al.  Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. , 2003, Molecular biology of the cell.

[46]  M. Peter,et al.  Opposite roles of the F-box protein Rcy1p and the GTPase-activating protein Gyp2p during recycling of internalized proteins in yeast. , 2003, Genetics.

[47]  J. Nunnari,et al.  The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion , 2003, The Journal of cell biology.

[48]  H. Prokisch,et al.  Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. , 2002, Journal of cell science.

[49]  A. Lombès,et al.  Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. , 2002, Journal of cell science.

[50]  Stefan Fritz,et al.  Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[51]  I. Vetter,et al.  The Guanine Nucleotide-Binding Switch in Three Dimensions , 2001, Science.

[52]  R. Jensen,et al.  UGO1 Encodes an Outer Membrane Protein Required for Mitochondrial Fusion , 2001, The Journal of cell biology.

[53]  I. Mills,et al.  GTPase activity of dynamin and resulting conformation change are essential for endocytosis , 2001, Nature.

[54]  H. Schägger Blue-native gels to isolate protein complexes from mitochondria. , 2001, Methods in cell biology.

[55]  W. Neupert,et al.  Mitochondria‐targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae , 2000, Yeast.

[56]  J. Thatcher,et al.  Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p , 1998, The Journal of cell biology.

[57]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[58]  W. Neupert,et al.  Fzo1p Is a Mitochondrial Outer Membrane Protein Essential for the Biogenesis of Functional Mitochondria in Saccharomyces cerevisiae* , 1998, Journal of Biological Chemistry.

[59]  I. Boldogh,et al.  Interaction between Mitochondria and the Actin Cytoskeleton in Budding Yeast Requires Two Integral Mitochondrial Outer Membrane Proteins, Mmm1p and Mdm10p , 1998, The Journal of cell biology.

[60]  K. G. Hales,et al.  Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase , 1997, Cell.

[61]  G. Mannhaupt,et al.  AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP‐dependent degradation of inner membrane proteins in mitochondria. , 1996, The EMBO journal.

[62]  Walter Neupert,et al.  The YTA10–12 Complex, an AAA Protease with Chaperone-like Activity in the Inner Membrane of Mitochondria , 1996, Cell.

[63]  S. Schmid,et al.  Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding , 1995, Nature.

[64]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.