Emergence of local and global synaptic organization on cortical dendrites

Synaptic inputs on cortical dendrites are organized with remarkable subcellular precision at the micron level. This organization emerges during early postnatal development through patterned spontaneous activity and manifests both locally where nearby synapses are significantly correlated, and globally with distance to the soma. We propose a biophysically motivated synaptic plasticity model to dissect the mechanistic origins of this organization during development and elucidate synaptic clustering of different stimulus features in the adult. Our model captures local clustering of orientation in ferret and receptive field overlap in mouse visual cortex based on the receptive field diameter and the cortical magnification of visual space. Including action potential back-propagation explains branch clustering heterogeneity in the ferret and produces a global retinotopy gradient from soma to dendrite in the mouse. Therefore, by combining activity-dependent synaptic competition and species-specific receptive fields, our framework explains different aspects of synaptic organization regarding stimulus features and spatial scales.

[1]  L. Kaczmarek,et al.  High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses , 2009, Neuroscience.

[2]  Rustem Khazipov,et al.  An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons , 2016, The Journal of Neuroscience.

[3]  Tomoki Fukai,et al.  Redundancy in synaptic connections enables neurons to learn optimally , 2017, Proceedings of the National Academy of Sciences.

[4]  Sonja B. Hofer,et al.  Synaptic organization of visual space in primary visual cortex , 2017, Nature.

[5]  Jianhua Cang,et al.  Developmental mechanisms of topographic map formation and alignment. , 2013, Annual review of neuroscience.

[6]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[7]  C. Lohmann,et al.  Calcium dynamics at developing synapses: mechanisms and functions , 2010, The European journal of neuroscience.

[8]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[9]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[10]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.

[11]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[12]  Alcino J. Silva,et al.  Synaptic clustering within dendrites: An emerging theory of memory formation , 2015, Progress in Neurobiology.

[13]  Alcino J. Silva,et al.  Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory , 2018, Nature Communications.

[14]  Jaeson Jang,et al.  Retino-Cortical Mapping Ratio Predicts Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. , 2020, Cell reports.

[15]  M. Sur,et al.  Locally coordinated synaptic plasticity of visual cortex neurons in vivo , 2018, Science.

[16]  Michael J. Higley,et al.  Localized GABAergic inhibition of dendritic Ca2+ signalling , 2014, Nature Reviews Neuroscience.

[17]  J. Gaiarsa,et al.  NMDA-dependent switch of proBDNF actions on developing GABAergic synapses. , 2013, Cerebral cortex.

[18]  Bertalan K. Andrásfalvy,et al.  Location-dependent synaptic plasticity rules by dendritic spine cooperativity , 2016, Nature Communications.

[19]  Jean-Philippe Thivierge,et al.  Correlated Synaptic Inputs Drive Dendritic Calcium Amplification and Cooperative Plasticity during Clustered Synapse Development , 2016, Neuron.

[20]  C. Clopath,et al.  The emergence of functional microcircuits in visual cortex , 2013, Nature.

[21]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[23]  Norio Matsuki,et al.  Locally Synchronized Synaptic Inputs , 2012, Science.

[24]  D. Fitzpatrick,et al.  The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex , 2001, Nature.

[25]  Nicholas V. Swindale,et al.  Retinal Wave Behavior through Activity-Dependent Refractory Periods , 2007, PLoS Comput. Biol..

[26]  Susumu Tonegawa,et al.  The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP , 2011, Neuron.

[27]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[28]  R. Morris,et al.  Making memories last: the synaptic tagging and capture hypothesis , 2010, Nature Reviews Neuroscience.

[29]  Madineh Sedigh-Sarvestani,et al.  Intracellular, In Vivo, Dynamics of Thalamocortical Synapses in Visual Cortex , 2017, The Journal of Neuroscience.

[30]  Nobuko Mataga,et al.  Experience-Dependent Pruning of Dendritic Spines in Visual Cortex by Tissue Plasminogen Activator , 2004, Neuron.

[31]  Manju Sasi,et al.  Neurobiology of local and intercellular BDNF signaling , 2017, Pflügers Archiv - European Journal of Physiology.

[32]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[33]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[34]  Bert Sakmann,et al.  Dendritic coding of multiple sensory inputs in single cortical neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[35]  Christian Lohmann,et al.  A BDNF-Mediated Push-Pull Plasticity Mechanism for Synaptic Clustering. , 2018, Cell reports.

[36]  Ju Lu,et al.  REPETITIVE MOTOR LEARNING INDUCES COORDINATED FORMATION OF CLUSTERED DENDRITIC SPINES IN VIVO , 2012, Nature.

[37]  Josiah R. Boivin,et al.  Functional implications of inhibitory synapse placement on signal processing in pyramidal neuron dendrites , 2018, Current Opinion in Neurobiology.

[38]  Sreedharan Sajikumar,et al.  Competition between recently potentiated synaptic inputs reveals a winner-take-all phase of synaptic tagging and capture , 2014, Proceedings of the National Academy of Sciences.

[39]  Petti T. Pang,et al.  The yin and yang of neurotrophin action , 2005, Nature Reviews Neuroscience.

[40]  Bryan J MacLennan,et al.  Functional clustering of dendritic activity during decision-making , 2019, eLife.

[41]  Tobias Bonhoeffer,et al.  Activity-Dependent Clustering of Functional Synaptic Inputs on Developing Hippocampal Dendrites , 2011, Neuron.

[42]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[43]  Alon Poleg-Polsky Dendritic Spikes Expand the Range of Well Tolerated Population Noise Structures , 2019, The Journal of Neuroscience.

[44]  T. Marissal,et al.  Spontaneous glutamatergic activity induces a BDNF‐dependent potentiation of GABAergic synapses in the newborn rat hippocampus , 2008, The Journal of physiology.

[45]  Alexander Borst,et al.  The TREES Toolbox—Probing the Basis of Axonal and Dendritic Branching , 2011, Neuroinformatics.

[46]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[47]  David E. Whitney,et al.  Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex , 2016, Nature Neuroscience.

[48]  Lauren C Harte-Hargrove,et al.  proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. , 2014, Cell reports.

[49]  Kem A. Sochacki,et al.  Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells , 2019, The Journal of general physiology.

[50]  R. Meredith,et al.  Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex , 2019, Scientific Reports.

[51]  J. McNamara,et al.  Autocrine BDNF–TrkB signalling within a single dendritic spine , 2016, Nature.

[52]  U. Frey,et al.  Synaptic tagging and long-term potentiation , 1997, Nature.

[53]  V. Tucci,et al.  The development of synaptic transmission is time-locked to early social behaviors in rats , 2019, Nature Communications.

[54]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[55]  Michael C Crair,et al.  Role of emergent neural activity in visual map development , 2014, Current Opinion in Neurobiology.

[56]  Nicholas J Priebe,et al.  Mechanisms of Orientation Selectivity in the Primary Visual Cortex. , 2016, Annual review of vision science.

[57]  Alexander S. Ecker,et al.  Generating Spike Trains with Specified Correlation Coefficients , 2009, Neural Computation.

[58]  Everton J. Agnes,et al.  Inhibitory Plasticity: Balance, Control, and Codependence. , 2017, Annual review of neuroscience.

[59]  David C. Sterratt,et al.  Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy , 2012, PLoS Comput. Biol..

[60]  C. Shatz,et al.  A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement , 2007, PLoS biology.

[61]  J. McNamara,et al.  Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity , 2016, Nature.

[62]  S. Schultz,et al.  Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus , 2016, PloS one.

[63]  M. Carandini,et al.  Spatial connectivity matches direction selectivity in visual cortex , 2020, Nature.

[64]  J. Gaiarsa,et al.  Backpropagating Action Potentials Trigger Dendritic Release of BDNF during Spontaneous Network Activity , 2008, The Journal of Neuroscience.

[65]  C. Siao,et al.  Neuronal release of proBDNF , 2009, Nature Neuroscience.

[66]  R. Huganir,et al.  Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses , 2012, Proceedings of the National Academy of Sciences.

[67]  Judit K. Makara,et al.  Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons , 2020, The Journal of Neuroscience.

[68]  M. Crair,et al.  Retinal waves coordinate patterned activity throughout the developing visual system , 2012, Nature.

[69]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[70]  B. Lu,et al.  Control of extracellular cleavage of ProBDNF by high frequency neuronal activity , 2009, Proceedings of the National Academy of Sciences.

[71]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[72]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[73]  W. Gerstner,et al.  Connectivity reflects coding: a model of voltage-based STDP with homeostasis , 2010, Nature Neuroscience.

[74]  R. Heumann,et al.  Synaptic secretion of BDNF after high‐frequency stimulation of glutamatergic synapses , 2001, The EMBO journal.

[75]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[76]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[77]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[78]  J. Alexander Heimel,et al.  Peripheral and Central Inputs Shape Network Dynamics in the Developing Visual Cortex In Vivo , 2012, Current Biology.

[79]  Christian Lohmann,et al.  Spontaneous Activity Drives Local Synaptic Plasticity In Vivo , 2015, Neuron.

[80]  T. Bonhoeffer,et al.  Development of orientation preference in the mammalian visual cortex. , 1999, Journal of neurobiology.

[81]  M. Feller,et al.  Mechanisms underlying spontaneous patterned activity in developing neural circuits , 2010, Nature Reviews Neuroscience.

[82]  Alexandre Mendes,et al.  Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models , 2018, Front. Comput. Neurosci..

[83]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[84]  Takashi Kawashima,et al.  Inverse Synaptic Tagging of Inactive Synapses via Dynamic Interaction of Arc/Arg3.1 with CaMKIIβ , 2012, Cell.

[85]  Knut Holthoff,et al.  GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo , 2015, Nature Communications.

[86]  L. Parajuli,et al.  Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. , 2015, Cell reports.

[87]  Tobias Bonhoeffer,et al.  Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time , 2015, Neuron.

[88]  Ian Nauhaus,et al.  Topography and Areal Organization of Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[89]  T. Bonhoeffer,et al.  Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex , 2008, Nature Neuroscience.

[90]  A. Rodríguez-Contreras,et al.  Learning Drives Differential Clustering of Axodendritic Contacts in the Barn Owl Auditory System , 2008, The Journal of Neuroscience.

[91]  Stephen J. Eglen,et al.  Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus , 2009, PLoS Comput. Biol..

[92]  Clifton C. Rumsey,et al.  Synaptic democracy in active dendrites. , 2006, Journal of neurophysiology.

[93]  David Fitzpatrick,et al.  Local Order within Global Disorder: Synaptic Architecture of Visual Space , 2017, Neuron.

[94]  Panayiota Poirazi,et al.  Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites , 2016, Cell reports.

[95]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[96]  Subhrajit Roy,et al.  An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks , 2015, IEEE Transactions on Neural Networks and Learning Systems.