ConJac: Large Steps in Dynamic Simulation

We present a new approach that allows large time steps in dynamic simulations. Our approach, ConJac, is based on condensation, a technique for eliminating many degrees of freedom (DOFs) by expressing them in terms of the remaining degrees of freedom. In this work, we choose a subset of nodes to be dynamic nodes, and apply condensation at the velocity level by defining a linear mapping from the velocities of these chosen dynamic DOFs to the velocities of the remaining quasistatic DOFs. We then use this mapping to derive reduced equations of motion involving only the dynamic DOFs. We also derive a novel stabilization term that enables us to use complex nonlinear material models. ConJac remains stable at large time steps, exhibits highly dynamic motion, and displays minimal numerical damping. In marked contrast to subspace approaches, ConJac gives exactly the same configuration as the full space approach once the static state is reached. ConJac works with a wide range of moderate to stiff materials, supports anisotropy and heterogeneity, handles topology changes, and can be combined with existing solvers including rigid body dynamics.

[1]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[2]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[3]  Marek Teichmann,et al.  Geometric Stiffness for Real‐time Constrained Multibody Dynamics , 2017, Comput. Graph. Forum.

[4]  B. Irons Structural eigenvalue problems - elimination of unwanted variables , 1965 .

[5]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[6]  Dinesh K. Pai,et al.  Post-stabilization for rigid body simulation with contact and constraints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[8]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[9]  E. Wilson The static condensation algorithm , 1974 .

[10]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[11]  Chenfanfu Jiang,et al.  Decomposed optimization time integrator for large-step elastodynamics , 2019, ACM Trans. Graph..

[12]  Ying Wang,et al.  RedMax: efficient & flexible approach for articulated dynamics , 2019, ACM Trans. Graph..

[13]  Eftychios Sifakis,et al.  Steklov-Poincaré skinning , 2014, SCA '14.

[14]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[15]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[16]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[17]  Doug L. James,et al.  Physics-Based Character Skinning Using Multidomain Subspace Deformations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[19]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[20]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[21]  Hujun Bao,et al.  Subspace dynamic simulation using rotation-strain coordinates , 2015, ACM Trans. Graph..

[22]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[23]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[24]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[25]  François Faure,et al.  Stable constrained dynamics , 2015, ACM Trans. Graph..

[26]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[27]  Ronald Fedkiw,et al.  Dynamic simulation of articulated rigid bodies with contact and collision , 2006, IEEE Transactions on Visualization and Computer Graphics.

[28]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[29]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[30]  Eftychios Sifakis,et al.  A macroblock optimization for grid-based nonlinear elasticity , 2016, Symposium on Computer Animation.

[31]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[32]  Theodore Kim,et al.  Anisotropic elasticity for inversion-safety and element rehabilitation , 2019, ACM Trans. Graph..

[33]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[34]  Bailin Deng,et al.  Accelerating ADMM for efficient simulation and optimization , 2019, ACM Trans. Graph..

[35]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[36]  Doug L. James,et al.  Real time physics: class notes , 2008, SIGGRAPH '08.

[37]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[38]  Sidney Fels,et al.  ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation , 2012 .

[39]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[40]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[41]  Xin Tong,et al.  A scalable galerkin multigrid method for real-time simulation of deformable objects , 2019, ACM Trans. Graph..

[42]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[43]  Hongyi Xu,et al.  Example-based damping design , 2017, ACM Trans. Graph..

[44]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[45]  TerzopoulosDemetri,et al.  Elastically deformable models , 1987 .

[46]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[47]  David I. W. Levin,et al.  Eulerian solid simulation with contact , 2011, SIGGRAPH 2011.

[48]  Mario Paz,et al.  Modified Dynamic Condensation Method , 1986 .

[49]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, ACM Trans. Graph..