Functional error estimators for the adaptive discretization of inverse problems
暂无分享,去创建一个
Barbara Kaltenbacher | Christian Clason | Daniel Wachsmuth | B. Kaltenbacher | D. Wachsmuth | Christian Clason
[1] Boris Vexler,et al. A Priori Error Analysis for Discretization of Sparse Elliptic Optimal Control Problems in Measure Space , 2013, SIAM J. Control. Optim..
[2] Wolfgang Bangerth,et al. Adaptive finite element methods for the solution of inverse problems in optical tomography , 2008 .
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] Guy Chavent,et al. Indicator for the refinement of parameterization , 1998 .
[5] Larisa Beilina,et al. A POSTERIORI ERROR ESTIMATION IN COMPUTATIONAL INVERSE SCATTERING , 2005 .
[6] V Ya Arsenin,et al. ON ILL-POSED PROBLEMS , 1976 .
[7] Rodolfo Rodríguez,et al. A posteriori error estimates for elliptic problems with Dirac delta source terms , 2006, Numerische Mathematik.
[8] Barbara Kaltenbacher,et al. Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: I. reduced formulation , 2013, 1309.6800.
[9] A. Neubauer. Solution of Ill-Posed Problems via Adaptive Grid Regularization: Convergence Analysis , 2007 .
[10] Ricardo H. Nochetto,et al. Pointwise a posteriori error estimates for monotone semi-linear equations , 2006, Numerische Mathematik.
[11] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[12] Functional a posteriori estimates for elliptic optimal control problems , 2015 .
[13] Michael V. Klibanov,et al. A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem , 2010 .
[14] Otmar Scherzer,et al. Finite-dimensional approximation of tikhonov regularized solutions of non-linear ill-posed problems , 1990 .
[15] Stefan Kindermann,et al. Parameter Identification by Regularization for Surface Representation via the Moving Grid Approach , 2003, SIAM J. Control. Optim..
[16] D. Lorenz,et al. Necessary conditions for variational regularization schemes , 2012, 1204.0649.
[17] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[18] M. Wolfmayr. A note on functional a posteriori estimates for elliptic optimal control problems , 2015, 1506.00306.
[19] A. E. Badia,et al. An Inverse Source Problem in Potential Analysis , 2000 .
[20] Karl Kunisch,et al. Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions , 2012, SIAM J. Control. Optim..
[21] Jérôme Jaffré,et al. Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .
[22] Barbara Kaltenbacher,et al. Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.
[23] Curtis R. Vogel,et al. Well posedness and convergence of some regularisation methods for non-linear ill posed problems , 1989 .
[24] Roland Becker,et al. A Posteriori Error Estimates for Parameter Identification , 2004 .
[25] R. Temam,et al. Grisvard's shift theorem near L^infinity and Yudovich theory on polygonal domains , 2013, 1310.5444.
[26] Brett Borden,et al. Ill-Posed Problems , 1999 .
[27] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[28] Karl Kunisch,et al. A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..
[29] Sören Bartels,et al. Error control and adaptivity for a variational model problem defined on functions of bounded variation , 2014, Math. Comput..
[30] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[31] N. V. Ivanov. PROJECTIVE STRUCTURES, FLAT BUNDLES, AND KÄHLER METRICS ON MODULI SPACES , 1988 .
[32] Kunibert G. Siebert,et al. Reliable a posteriori error estimation for state-constrained optimal control , 2017, Comput. Optim. Appl..
[33] Roger Temam,et al. Grisvard's Shift Theorem Near L∞ and Yudovich Theory on Polygonal Domains , 2015, SIAM J. Math. Anal..
[34] S. Osher,et al. Convergence rates of convex variational regularization , 2004 .
[35] Barbara Kaltenbacher,et al. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems , 2011 .
[36] Ronald H. W. Hoppe,et al. Convergence Analysis of an Adaptive Finite Element Method for Distributed Control Problems with Control Constraints , 2007 .
[37] Sergey I. Repin,et al. A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..
[38] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[39] H. Ben Ameur,et al. Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators , 2002 .
[40] E. Haber,et al. Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .
[41] J. Tinsley Oden,et al. A Posteriori Error Estimation , 2002 .
[42] Wenbin Liu,et al. A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..
[43] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[44] Christian Clason,et al. An Adaptive Hybrid FEM/FDM Method for an Inverse Scattering Problem in Scanning Acoustic Microscopy , 2006, SIAM J. Sci. Comput..
[45] Barbara Kaltenbacher,et al. Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization , 2008 .
[46] Arnd Rösch,et al. A-posteriori error estimates for optimal control problems with state and control constraints , 2012, Numerische Mathematik.
[47] Vitalii P. Tanana,et al. Theory of Linear Ill-Posed Problems and its Applications , 2002 .
[48] Otmar Scherzer,et al. Variational Methods in Imaging , 2008, Applied mathematical sciences.
[49] K. Kunisch,et al. A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .
[50] Kunibert G. Siebert,et al. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints , 2014, SIAM J. Control. Optim..
[51] Ulrich Langer,et al. Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems , 2014, Comput. Methods Appl. Math..
[52] Barbara Kaltenbacher,et al. Goal oriented adaptivity in the IRGNM for parameter identification in PDEs: II. all-at-once formulations , 2013, 1310.6576.
[53] Roland Becker,et al. A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.