Trajectory Visibility
暂无分享,去创建一个
Maarten Löffler | Ivor van der Hoog | Frank Staals | Patrick Eades | M. Löffler | F. Staals | I. Hoog | Patrick Eades
[1] Emo WELZL,et al. Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..
[2] Leonidas J. Guibas,et al. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.
[3] S. Benhamou,et al. Spatial analysis of animals' movements using a correlated random walk model* , 1988 .
[4] Padhraic Smyth,et al. Trajectory clustering with mixtures of regression models , 1999, KDD '99.
[5] Bernard Chazelle,et al. Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..
[6] David G. Kirkpatrick,et al. Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..
[7] Frédo Durand,et al. A Multidisciplinary Survey of Visibility , 2000 .
[8] Robert L. Grossman,et al. Visibility with a moving point of view , 1994, SODA '90.
[9] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..
[10] Ketan Mulmuley,et al. Hidden surface removal with respect to a moving view point , 1991, STOC '91.
[11] Jae-Gil Lee,et al. Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.
[12] Leonidas J. Guibas,et al. Optimal shortest path queries in a simple polygon , 1987, SCG '87.
[13] Jean Cardinal,et al. Recognition and Complexity of Point Visibility Graphs , 2015, Discret. Comput. Geom..
[14] Robert Weibel,et al. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..
[15] Leila De Floriani,et al. Algorithms for Visibility Computation on Terrains: A Survey , 2003 .
[16] Leonidas J. Guibas,et al. Ray shooting in polygons using geodesic triangulations , 1991, Algorithmica.
[17] Eliezer Gurarie,et al. A novel method for identifying behavioural changes in animal movement data. , 2009, Ecology letters.
[18] G.S. Brodal,et al. Dynamic planar convex hull , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[19] Subir Kumar Ghosh,et al. Unsolved problems in visibility graphs of points, segments, and polygons , 2010, ACM Comput. Surv..
[20] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[21] Jirí Matousek,et al. Dynamic half-space range reporting and its applications , 2005, Algorithmica.
[22] Leonidas J. Guibas,et al. Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..
[23] Robert E. Tarjan,et al. Making data structures persistent , 1986, STOC '86.
[24] Steve Fisk,et al. A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.
[25] Marc J. van Kreveld,et al. Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.
[26] Michel Pocchiola,et al. The visibility complex , 1993, SCG '93.
[27] Micha Sharir,et al. On Range Searching with Semialgebraic Sets II , 2012, FOCS.
[28] Leonidas J. Guibas,et al. Visibility Queries and Maintenance in Simple Polygons , 2002, Discret. Comput. Geom..
[29] Joachim Gudmundsson,et al. Reporting flock patterns , 2006, Comput. Geom..
[30] A. Stohl. Computation, accuracy and applications of trajectories—A review and bibliography , 1998 .
[31] Mark de Berg,et al. Ray Shooting, Depth Orders and Hidden Surface Removal , 1993, Lecture Notes in Computer Science.
[32] Xiaojie Li,et al. Deriving features of traffic flow around an intersection from trajectories of vehicles , 2010, 2010 18th International Conference on Geoinformatics.
[33] Jirí Matousek. Range searching with efficient hierarchical cuttings , 1992, SCG '92.
[34] V. Chvátal. A combinatorial theorem in plane geometry , 1975 .
[35] Michael Ben-Or,et al. Lower bounds for algebraic computation trees , 1983, STOC.