EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages.

[1]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[2]  K. Tracey,et al.  A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation , 2011, PloS one.

[3]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[4]  D. Tang,et al.  HMGB1: A novel Beclin 1-binding protein active in autophagy , 2010, Autophagy.

[5]  K. Tracey,et al.  Endogenous HMGB1 regulates autophagy , 2010, The Journal of cell biology.

[6]  C. Ward,et al.  Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1). , 2010, Biochemical pharmacology.

[7]  C. Ra,et al.  Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction. , 2010, Free radical biology & medicine.

[8]  P. Agostinis,et al.  Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage , 2010, Journal of cellular and molecular medicine.

[9]  Y. Fujimura,et al.  TLR4 Signaling Inhibitory Pathway Induced by Green Tea Polyphenol Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor , 2010, The Journal of Immunology.

[10]  G. Fimia,et al.  Regulation of autophagy in mammals and its interplay with apoptosis , 2010, Cellular and Molecular Life Sciences.

[11]  Haichao Wang,et al.  NOVEL HMGB1-INHIBITING THERAPEUTIC AGENTS FOR EXPERIMENTAL SEPSIS , 2009, Shock.

[12]  Ji Ming Wang,et al.  The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits leukocyte activation by bacterial formylpeptide through the receptor FPR. , 2009, International immunopharmacology.

[13]  K. Tracey,et al.  Spermine Protects Mice Against Lethal Sepsis Partly by Attenuating Surrogate Inflammatory Markers , 2009, Molecular medicine.

[14]  Yang Liu,et al.  CD24 and Siglec-10 Selectively Repress Tissue Damage–Induced Immune Responses , 2009, Science.

[15]  Haichao Wang,et al.  Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. , 2009, American journal of respiratory cell and molecular biology.

[16]  I. Chaudry,et al.  When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. , 2009, Trends in molecular medicine.

[17]  T. Ishii,et al.  Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. , 2008, Free radical biology & medicine.

[18]  Haichao Wang,et al.  Therapeutic potential of HMGB1-targeting agents in sepsis , 2008, Expert Reviews in Molecular Medicine.

[19]  A. Thorburn,et al.  Autophagy regulates selective HMGB1 release in tumor cells that are destined to die , 2008, Cell Death and Differentiation.

[20]  B. Funke,et al.  High-Mobility Group Box-1 in Ischemia-Reperfusion Injury of the Heart , 2008, Circulation.

[21]  J. Shorter,et al.  Escaping amyloid fate , 2008, Nature Structural &Molecular Biology.

[22]  D. Ehrnhoefer,et al.  EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers , 2008, Nature Structural &Molecular Biology.

[23]  H. Sakagami,et al.  Induction of apoptosis by epigallocatechin gallate and autophagy inhibitors in a mouse macrophage-like cell line. , 2008, Anticancer research.

[24]  J. Dear,et al.  Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. , 2008, American journal of physiology. Renal physiology.

[25]  P. Pinton,et al.  Ca2+ signaling, mitochondria and cell death. , 2008, Current molecular medicine.

[26]  John L Cleveland,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes , 2008, Autophagy.

[27]  R. Ramasamy,et al.  Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. , 2008, The Journal of clinical investigation.

[28]  D. Green,et al.  Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis , 2007, Nature.

[29]  M. Rosengart,et al.  HMGB1 release induced by liver ischemia involves Toll-like receptor 4–dependent reactive oxygen species production and calcium-mediated signaling , 2007, The Journal of experimental medicine.

[30]  Huan Yang,et al.  A Major Ingredient of Green Tea Rescues Mice from Lethal Sepsis Partly by Inhibiting HMGB1 , 2007, PloS one.

[31]  J. Keane,et al.  T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. , 2007, Immunity.

[32]  Guido Kroemer,et al.  Self-eating and self-killing: crosstalk between autophagy and apoptosis , 2007, Nature Reviews Molecular Cell Biology.

[33]  A. Sharafkhaneh,et al.  Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. , 2007, Immunity.

[34]  K. Tracey,et al.  A Cardiovascular Drug Rescues Mice from Lethal Sepsis by Selectively Attenuating a Late-Acting Proinflammatory Mediator, High Mobility Group Box 11 , 2007, The Journal of Immunology.

[35]  N. Banik,et al.  Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH‐SY5Y cells exposed to flavonoids , 2006, International journal of cancer.

[36]  Janet L. Johnstone,et al.  Intracellular Protein Aggregation Is a Proximal Trigger of Cardiomyocyte Autophagy , 2008, Circulation.

[37]  B. Striepen,et al.  CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. , 2006, The Journal of clinical investigation.

[38]  K. Tracey,et al.  The Aqueous Extract of a Popular Herbal Nutrient Supplement, Angelica sinensis, Protects Mice against Lethal Endotoxemia and Sepsis , 2006, The Journal of Nutrition.

[39]  Koji Yamada,et al.  A lipid raft-associated 67kDa laminin receptor mediates suppressive effect of epigallocatechin-3-O-gallate on FcepsilonRI expression. , 2005, Biochemical and biophysical research communications.

[40]  G. Kroemer,et al.  The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death , 2005, Journal of Cell Science.

[41]  K. Tracey,et al.  Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: Published, JLR Papers in Press, February 1, 2005. DOI 10.1194/jlr.C400018-JLR200an additional mechanism for its therapeutic effects in experimental sepsis , 2005, Journal of Lipid Research.

[42]  V. Deretic,et al.  Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages , 2004, Cell.

[43]  G. Williamson,et al.  A review of the health effects of green tea catechins in in vivo animal models. , 2004, The Journal of nutrition.

[44]  Daniel J. Klionsky,et al.  Autophagy in Health and Disease: A Double-Edged Sword , 2004, Science.

[45]  S. Hamada,et al.  Autophagy Defends Cells Against Invading Group A Streptococcus , 2004, Science.

[46]  K. Tracey,et al.  Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis , 2004, Nature Medicine.

[47]  K. Tracey,et al.  Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14‐ and TNF‐dependent mechanisms , 2004, Journal of leukocyte biology.

[48]  Shizuo Akira,et al.  Toll-like receptor signalling , 2004, Nature Reviews Immunology.

[49]  Y. Fujimura,et al.  A receptor for green tea polyphenol EGCG , 2004, Nature Structural &Molecular Biology.

[50]  K. Tracey,et al.  Lipid unites disparate syndromes of sepsis , 2004, Nature Medicine.

[51]  Koji Yamada,et al.  Lipid raft‐associated catechin suppresses the FcϵRI expression by inhibiting phosphorylation of the extracellular signal‐regulated kinase1/2 , 2004, FEBS letters.

[52]  K. Tracey,et al.  Reversing established sepsis with antagonists of endogenous high-mobility group box 1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Frei,et al.  Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. , 2003, The Journal of nutrition.

[54]  J. Vita Tea consumption and cardiovascular disease: effects on endothelial function. , 2003, The Journal of nutrition.

[55]  K. Tracey,et al.  IFN-γ Induces High Mobility Group Box 1 Protein Release Partly Through a TNF-Dependent Mechanism1 , 2003, The Journal of Immunology.

[56]  Xiaofeng Meng,et al.  Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. , 2002, Cancer research.

[57]  I. Chaudry,et al.  Novel Approach to Prevent the Transition From the Hyperdynamic Phase to the Hypodynamic Phase of Sepsis: Role of Adrenomedullin and Adrenomedullin Binding Protein-1 , 2002, Annals of surgery.

[58]  K. Tracey,et al.  Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  David M. Smith,et al.  Ester Bond-containing Tea Polyphenols Potently Inhibit Proteasome Activity in Vitro and in Vivo * , 2001, The Journal of Biological Chemistry.

[60]  K. Tracey,et al.  High Mobility Group 1 Protein (Hmg-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes , 2000, The Journal of experimental medicine.

[61]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[62]  K. Tracey,et al.  HMG-1 as a late mediator of endotoxin lethality in mice. , 1999, Science.

[63]  Fajun Yang,et al.  Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. , 1998, The Journal of nutrition.

[64]  May-Chen Kuo,et al.  Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. , 1998, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[65]  H N Graham,et al.  Green tea composition, consumption, and polyphenol chemistry. , 1992, Preventive medicine.

[66]  Herbert J Zeh,et al.  High-mobility group box 1 and cancer. , 2010, Biochimica et biophysica acta.

[67]  Haichao Wang,et al.  More tea for septic patients?--Green tea may reduce endotoxin-induced release of high mobility group box 1 and other pro-inflammatory cytokines. , 2006, Medical hypotheses.

[68]  Y. Fujimura,et al.  Tea polyphenol epigallocatechin‐3‐gallate associates with plasma membrane lipid rafts: Lipid rafts mediate anti‐allergic action of the catechin , 2004, BioFactors.

[69]  H. Elsässer,et al.  Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. , 1995, European journal of cell biology.