The role of green extraction techniques in Green Analytical Chemistry

Abstract Greening extraction techniques to improve the sensitivity and the selectivity of analytical methods is the sustainable alternative to classical sample-preparation procedures used in the past. In this update, we review the main strategies employed in the scientific literature to reduce deleterious side-effects of extraction techniques. We demonstrate that the evolution of sample-treatment procedures is focused on the simultaneous improvement of the main analytical features of the method and its practical aspects, including the economic case.

[1]  S. Pedersen‐Bjergaard,et al.  Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. , 1999, Analytical chemistry.

[2]  A. Mehdinia,et al.  Electrochemically prepared solid-phase microextraction coatings--a review. , 2013, Analytica chimica acta.

[3]  F. Smith,et al.  Microwave-assisted sample preparation in analytical chemistry. , 1996, Talanta.

[4]  Jacek Namieśnik,et al.  Developments in ultrasound-assisted microextraction techniques for isolation and preconcentration of organic analytes from aqueous samples , 2013 .

[5]  A. Przyjazny,et al.  Single drop microextraction--development, applications and future trends. , 2010, Journal of chromatography. A.

[6]  Víctor Cerdà,et al.  Automated in-syringe dispersive liquid-liquid microextraction , 2014 .

[7]  F. Chemat,et al.  Efficient green extraction of polyphenols from post-harvested agro-industry vegetal sources in Piedmont , 2014 .

[8]  Farid Chemat,et al.  Green Extraction of Natural Products: Concept and Principles , 2012, International journal of molecular sciences.

[9]  M. de la Guardia,et al.  Green Analytical Chemistry , 2008 .

[10]  Manuel Miró,et al.  On-chip microsolid-phase extraction in a disposable sorbent format using mesofluidic platforms , 2014 .

[11]  M. Valcárcel,et al.  Nanoparticles and continuous-flow systems combine synergistically for preconcentration , 2013 .

[12]  R. M. Kakhki Recent developments in microextraction techniques based on crown ethers , 2013 .

[13]  A. S. Yazdi Surfactant-based extraction methods , 2011 .

[14]  Antonio V. Herrera-Herrera,et al.  Dispersive Solid‐Phase Extraction , 2015 .

[15]  J. Namieśnik,et al.  Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. , 2013, Chemical reviews.

[16]  J. L. Capelo and A. M. Mota Ultrasonication for Analytical Chemistry , 2005 .

[17]  K. Farhadi,et al.  A novel dispersive micro solid phase extraction using zein nanoparticles as the sorbent combined with headspace solid phase micro-extraction to determine chlorophenols in water and honey samples by GC-ECD. , 2014, Talanta.

[18]  N. Kalogerakis,et al.  Developments in single-drop microextraction , 2002 .

[19]  M. Guardia,et al.  Efficiency of the microwave-assisted extraction of hydrocarbons and pesticides from sediments , 1997 .

[20]  Łukasz Marcinkowski,et al.  Green aspects, developments and perspectives of liquid phase microextraction techniques. , 2014, Talanta.

[21]  K. Srogi A Review: Application of Microwave Techniques for Environmental Analytical Chemistry , 2006 .

[22]  K. Furton,et al.  Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry , 2013 .

[23]  M D Luque de Castro,et al.  Soxhlet extraction: Past and present panacea. , 2010, Journal of chromatography. A.

[24]  Seyed Saeid Mohtasebi,et al.  Application of machine-vision techniques to fish-quality assessment , 2012 .

[25]  C. Basheer,et al.  Development and application of polymer-coated hollow fiber membrane microextraction to the determination of organochlorine pesticides in water. , 2004, Journal of chromatography. A.

[26]  M. Rezaee,et al.  Determination of organic compounds in water using dispersive liquid-liquid microextraction. , 2006, Journal of chromatography. A.

[27]  Paul T. Anastas,et al.  Green chemistry : frontiers in benign chemical syntheses and processes , 1998 .

[28]  Steven J Lehotay,et al.  Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. , 2003, Journal of AOAC International.

[29]  Runhua Lu,et al.  Application of ionic liquids for liquid–liquid microextraction , 2013 .

[30]  J. Pawliszyn,et al.  Solid phase microextraction with thermal desorption using fused silica optical fibers , 1990 .

[31]  Miguel de la Guardia,et al.  The social responsibility of environmental analysis , 2014 .

[32]  B. Buszewski,et al.  Past, Present, and Future of Solid Phase Extraction: A Review , 2012 .

[33]  Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry , 2012 .

[34]  Cristina Mahugo-Santana,et al.  Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants , 2011 .

[35]  M. Valcárcel,et al.  The roles of ionic liquids in sorptive microextraction techniques , 2010 .

[36]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[37]  V. Andruch,et al.  A glance at achievements in the coupling of headspace and direct immersion single-drop microextraction with chromatographic techniques. , 2013, Journal of separation science.

[38]  J. Kokosa Advances in solvent-microextraction techniques , 2013 .

[39]  Hanwen Sun,et al.  Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. , 2012, Journal of chromatography. A.

[40]  J. Namieśnik,et al.  Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. , 2013, Journal of chromatography. A.

[41]  Liu,et al.  Continuous-flow microextraction exceeding 1000-fold concentration of dilute analytes , 2000, Analytical chemistry.

[42]  M. Valcárcel,et al.  Nanoparticle-based microextraction techniques in bioanalysis. , 2011, Bioanalysis.

[43]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.

[44]  F. Borrull,et al.  Molecularly-imprinted polymers: useful sorbents for selective extractions , 2010 .

[45]  A. Mehdinia,et al.  Advances for sensitive, rapid and selective extraction in different configurations of solid-phase microextraction , 2013 .

[46]  Partial least squares attenuated total reflectance IR spectroscopy versus chromatography: the greener method. , 2012, Bioanalysis.

[47]  Nigel Beard,et al.  Dealing with real samples: sample pre-treatment in microfluidic systems. , 2003, Lab on a chip.

[48]  C. Turner,et al.  Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. , 2011, Analytica chimica acta.

[49]  S. Hill,et al.  Microwave digestion procedures for environmental matrices , 1998 .

[50]  Paula Berton,et al.  Ionic liquid-based microextraction techniques for trace-element analysis , 2014 .

[51]  Dai Youyuan,et al.  Directly suspended droplet microextraction , 2006 .

[52]  F. Borrull,et al.  Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge , 2010 .

[53]  Paul T. Anastas,et al.  Green Chemistry and the Role of Analytical Methodology Development , 1999 .

[54]  Jacek Namieśnik,et al.  Analytical eco-scale for assessing the greenness of analytical procedures , 2012 .

[55]  J. Namieśnik,et al.  Membrane solid-phase microextraction--a new concept of sorbent preparation. , 2009, Analytical chemistry.

[56]  F. Pena-Pereira,et al.  Liquid-phase microextraction techniques within the framework of green chemistry , 2010 .

[57]  Juanjuan Feng,et al.  [Recent developments in solid-phase microextraction]. , 2012, Se pu = Chinese journal of chromatography.

[58]  Yolanda Picó,et al.  Ultrasound-assisted extraction for food and environmental samples , 2013 .

[59]  B. Karlberg,et al.  Flow/sequential injection sample treatment coupled to capillary electrophoresis. A review. , 2009, Analytica chimica acta.

[60]  E. Stashenko,et al.  Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. , 2007, Journal of biochemical and biophysical methods.

[61]  Miguel de la Guardia,et al.  Non-invasive analysis of solid samples , 2013 .

[62]  Jana Šandrejová,et al.  Application of ultrasonic irradiation and vortex agitation in solvent microextraction , 2013 .

[63]  M. de la Guardia,et al.  Green Analytical Chemistry: Theory and Practice , 2010 .

[64]  G. Lespes,et al.  Speciation analysis of organotin compounds in human urine by headspace solid-phase micro-extraction and gas chromatography with pulsed flame photometric detection. , 2014, Talanta.

[65]  J. Jia,et al.  Electrosorption-enhanced solid-phase microextraction using activated carbon fiber for determination of aniline in water. , 2007, Journal of Chromatography A.

[66]  T. Hyötyläinen Critical evaluation of sample pretreatment techniques , 2009, Analytical and bioanalytical chemistry.

[67]  M. Miró,et al.  Automated membrane-based sampling and sample preparation exploiting flow-injection analysis , 2004 .

[68]  E. Cukrowska,et al.  Advances in sample preparation using membrane-based liquid-phase microextraction techniques , 2011 .

[69]  Farid Chemat,et al.  Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry , 2013 .

[70]  V. Pino,et al.  Ionic liquids in dispersive liquid-liquid microextraction , 2013 .

[71]  M. D. L. Castro,et al.  Ultrasound-assisted analytical emulsification-extraction , 2013 .

[72]  Jacek Namieśnik,et al.  The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices , 2013 .

[73]  Archana Jain,et al.  Recent advances in applications of single-drop microextraction: a review. , 2011, Analytica chimica acta.