Gas-Phase Infrared Photodissociation Spectroscopy of Cationic Polyaromatic Hydrocarbons

Infrared spectra of gas-phase cationic naphthalene, phenanthrene, anthracene, and pyrene are recorded in the 500-1600 cm-1 range using multiphoton dissociation in an ion trap. Gas-phase polyaromatic hydrocarbons are photoionized by an excimer laser and stored in a quadrupole ion trap. Subsequent interaction with the intense infrared radiation of a free electron laser that is tuned in resonance with an infrared-allowed transition of the ion leads to sequential multiphoton absorption facilitated by rapid intramolecular vibrational redistribution. Absorption of more than 50-100 infrared photons raises the internal energy to above the dissociation threshold, leading eventually to fragmentation of the ion. Mass selective detection of the cationic species stored in the trap yields the infrared absorption spectrum of the parent ion.

[1]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 3. The polyacenes anthracene, tetracene, and pentacene. , 2013, The Journal of physical chemistry.

[2]  J. Oomens,et al.  Vibrational spectroscopy of gas-phase neutral and cationic phenanthrene in their electronic groundstates. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  A. Fujii,et al.  Infrared spectroscopy of CH stretching vibrations of jet-cooled alkylbenzene cations by using the "messenger" technique , 2000 .

[4]  G. Meijer,et al.  Infrared Spectroscopy of Jet-cooled Cationic Polyaromatic Hydrocarbons: Naphthalene+ , 1999 .

[5]  D. Hudgins,et al.  Interstellar PAH Emission in the 11-14 Micron Region: New Insightsfrom Laboratory Data and a Tracer of Ionized PAHs , 1999, The Astrophysical journal.

[6]  H. Baumgärtel,et al.  Structure-dependent Photostability of Polycyclic Aromatic Hydrocarbon Cations: Laboratory Studies and Astrophysical Implications , 1999 .

[7]  D. Hudgins,et al.  Direct Spectroscopic Evidence for Ionized Polycyclic Aromatic Hydrocarbons in the Interstellar Medium , 1999, The Astrophysical journal.

[8]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[9]  I. Holleman,et al.  Excitation of C60 using a chirped free electron laser. , 1999, Optics express.

[10]  G. Helden,et al.  Infrared spectroscopy of jet-cooled neutral and ionized aniline-Ar , 1999 .

[11]  A. Marshall,et al.  Photodissociation of Gas-Phase Polycylic Aromatic Hydrocarbon Cations , 1998 .

[12]  G. Meijer Infrared Resonance Enhanced Multi Photon Ionization of Fullerenes , 1997, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[13]  G. Helden,et al.  Mass selective infrared spectroscopy using a free electron laser , 1996 .

[14]  C. Joblin,et al.  Variations of the 8.6 and 11.3 μm Emission Bands within NGC 1333: Evidence for Polycyclic Aromatic Hydrocarbon Cations , 1996 .

[15]  S. Schlemmer,et al.  Infrared emission spectra of candidate interstellar aromatic molecules , 1996, Nature.

[16]  S. Langhoff Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions , 1996 .

[17]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene. , 1995, The Journal of physical chemistry.

[18]  S. Schlemmer,et al.  The unidentified interstellar infrared bands: PAHs as carriers? , 1994, Science.

[19]  O. Parisel,et al.  Electronic and Vibrational Spectra Of Matrix-Isolated Pyrene Radical Cations: Theoretical and Experimental Aspects , 1994 .

[20]  M. Naor,et al.  Time-dependent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene , 1993 .

[21]  O. Parisel,et al.  Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects , 1993 .

[22]  D. Defrees,et al.  Theoretical IR spectra of ionized naphthalene. , 1993, The Journal of physical chemistry.

[23]  M. Vala,et al.  Infrared spectrum of matrix-isolated naphthalene radical cation , 1992 .

[24]  J. Barker,et al.  Infrared emission spectra of benzene and naphthalene : implications for the interstellar polycyclic aromatic hydrocarbon hypothesis , 1992 .

[25]  J. Todd,et al.  The recent evolution of the quadrupole ion trap mass spectrometer—an overview , 1991 .

[26]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[27]  Mitchio Okumura,et al.  Infrared spectra of the solvated hydronium ion: Vibrational predissociation spectroscopy of mass-selected H3O+.cntdot.(H2O)n.cntdot.(H2)m , 1990 .

[28]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[29]  A. Zewail,et al.  Dynamics of intramolecular vibrational‐energy redistribution (IVR). II. Excess energy dependence , 1985 .

[30]  Alexander G. G. M. Tielens,et al.  Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way , 1985 .

[31]  S. Stein,et al.  Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors , 1973 .

[32]  P. Boissel Photofragmentation of Isolated PAH Cations , 1995 .

[33]  A.F.G. van der Meer,et al.  The Free-Electron-Laser user facility FELIX , 1995 .

[34]  S. Sandford,et al.  Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene. , 1994, The Journal of physical chemistry.

[35]  P. Sarre DIFFUSE INTERSTELLAR BANDS , 1993 .