Examples of Undecidable Problems for 2-Generator Matrix Semigroups

Abstract We show that the following two problems are undecidable: given two square matrices, decide whether the semigroup that they generate contains the zero matrix, and whether it contains a matrix having a zero in the right upper corner.

[1]  Gérard Jacob La finitude des représentations linéaires des semi-groupes est décidable , 1978 .

[2]  M. Paterson Unsolvability in 3 × 3 Matrices , 1970 .

[3]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[4]  Imre Simon,et al.  On Finite Semigroups of Matrices , 1977, Theor. Comput. Sci..

[5]  Jean-Camille Birget,et al.  On the Undecidability of the Freeness of Integer Matrix Semigroups , 1991, Int. J. Algebra Comput..

[6]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[7]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[8]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[9]  John N. Tsitsiklis,et al.  When is a Pair of Integer Matrices Mortal , 1995 .