Visualizing the Positional and Geometrical Variability of Isosurfaces in Uncertain Scalar Fields

We present a novel approach for visualizing the positional and geometrical variability of isosurfaces in uncertain 3D scalar fields. Our approach extends recent work by Pöthkow and Hege [ PH10 ] in that it accounts for correlations in the data to determine more reliable isosurface crossing probabilities. We introduce an incremental update‐scheme that allows integrating the probability computation into front‐to‐back volume ray‐casting efficiently. Our method accounts for homogeneous and anisotropic correlations, and it determines for each sampling interval along a ray the probability of crossing an isosurface for the first time. To visualize the positional and geometrical uncertainty even under viewing directions parallel to the surface normal, we propose a new color mapping scheme based on the approximate spatial deviation of possible surface points from the mean surface. The additional use of saturation enables to distinguish between areas of high and low statistical dependence. Experimental results confirm the effectiveness of our approach for the visualization of uncertainty related to position and shape of convex and concave isosurface structures.

[1]  Björn Zehner,et al.  Visualization of gridded scalar data with uncertainty in geosciences , 2010, Comput. Geosci..

[2]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[3]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[4]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[5]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[6]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[8]  Ross Brown Animated visual vibrations as an uncertainty visualisation technique , 2004, GRAPHITE '04.

[9]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[10]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[11]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[12]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[13]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[14]  Mark Gahegan,et al.  A typology for visualizing uncertainty , 2005, IS&T/SPIE Electronic Imaging.

[15]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[16]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[17]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[18]  Saiful Islam,et al.  Mahalanobis Distance , 2009, Encyclopedia of Biometrics.

[19]  Mark Gahegan,et al.  Visualizing Geospatial Information Uncertainty: What We Know and What We Need to Know , 2005 .

[20]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[21]  Manfred Weiler,et al.  Hardware-beschleunigte Volumenvisualisierung auf adaptiven Datenstrukturen , 2006 .

[22]  Chi-Wing Fu,et al.  Visualizing Large-Scale Uncertainty in Astrophysical Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Robert S. Laramee,et al.  Uncertainty Visualization Methods in Isosurface Rendering , 2003, Eurographics.

[24]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[25]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[26]  Luc Anselin,et al.  Visualizing Seismic Risk and Uncertainty , 2008, Annals of the New York Academy of Sciences.

[27]  G. O. Wesolowsky,et al.  On the computation of the bivariate normal integral , 1990 .

[28]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.