Two-dimensional molecular electronics circuits.

Addressing an array of bistable [2]rotaxanes through a two-dimensional crossbar arrangement provides the device element of a current-driven molecular electronic circuit. The development of the [2]rotaxane switches through an iterative, evolutionary process is described. The arrangement reported here allows both memory and logic functions to use the same elements.

[1]  D. D. Perrin,et al.  Purification of laboratory chemicals , 1966 .

[2]  Robert E. Jones,et al.  Ferroelectric non-volatile memories for low-voltage, low-power applications , 1995 .

[3]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[4]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[5]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[6]  Robert M. Metzger,et al.  ELECTRICAL RECTIFICATION BY A MOLECULE : THE ADVENT OF UNIMOLECULAR ELECTRONIC DEVICES , 1999 .

[7]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[8]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[9]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[10]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[11]  M. Reed,et al.  Computing with molecules. , 2000, Scientific American.

[12]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[13]  Peidong Yang,et al.  Microchannel Networks for Nanowire Patterning , 2000 .

[14]  Christopher L. Brown,et al.  Introduction of [2]Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials , 2000 .

[15]  J F Stoddart,et al.  Molecular-based electronically switchable tunnel junction devices. , 2001, Journal of the American Chemical Society.

[16]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[17]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[18]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[19]  Theresa S. Mayer,et al.  Self-Alignment of Patterned Wafers Using Capillary Forces at a Water–Air Interface , 2001 .

[20]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[21]  Zhenan Bao,et al.  Self-assembled monolayer organic field-effect transistors , 2001, Nature.

[22]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[23]  Robert A Beckman,et al.  Self-assembled, deterministic carbon nanotube wiring networks. , 2002, Angewandte Chemie.

[24]  Michael R. Diehl,et al.  Self-Assembled, Deterministic Carbon Nanotube Wiring Networks This work was funded by the Office of Naval Research, DARPA, and an NSF-FRG grant. , 2002 .