Stabilizing global mean surface temperature: A feedback control perspective

In this paper, we develop a discrete time, state variable feedback control regime to analyze the closed-loop properties associated with stabilizing the global mean surface temperature anomaly at 2^oC within a sequential decision making framework made up of 20 year review periods beginning in 2020. The design of the feedback control uses an optimal control approach that minimizes the peak deceleration of anthropogenic CO"2 emissions whilst avoiding overshooting the 2^oC target. The peak value for emissions deceleration that satisfies the closed-loop optimization was found to be linearly related to climate sensitivity and a climate sensitivity of 3.5^oC gave a deceleration of -1.9GtC/a/20 years^2. In addition to accounting for the predicted climate dynamics, the control system design includes a facility to emulate a robust corrective action in the face of uncertainty. The behavior of the overall control action is evaluated using an uncertainty scenario for climate model equilibrium sensitivity.

[1]  S Pacala,et al.  Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies , 2004, Science.

[2]  Peter C. Young,et al.  Self-adaptive design of a nonlinear temperature control system , 1991 .

[3]  M. Schlesinger,et al.  A sequential-decision strategy for abating climate change , 1992, Nature.

[4]  Tom Tietenberg,et al.  Theory and design , 2001 .

[5]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[6]  Nicolas Treich,et al.  Decision-Making Under Scientific Uncertainty: The Economics of the Precautionary Principle , 2003 .

[7]  S. Alam,et al.  Framework Convention on Climate Change , 1993 .

[8]  Astrom Computer Controlled Systems , 1990 .

[9]  M. B. Beck Environmental Foresight and Models: A Manifesto , 2002 .

[10]  Peter C. Young,et al.  Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems , 2006, Environ. Model. Softw..

[11]  Henry D. Jacoby,et al.  Sequential climate decisions under uncertainty: An integrated framework , 1998 .

[12]  Peter C. Young,et al.  A unified approach to environmental systems modeling , 2009 .

[13]  Michael D Mastrandrea,et al.  Probabilistic Integrated Assessment of "Dangerous" Climate Change , 2004, Science.

[14]  Richard S. J. Tol,et al.  On the optimal control of carbon dioxide emissions: an application of FUND , 1997 .

[15]  L. Greene EHPnet: United Nations Framework Convention on Climate Change , 2000, Environmental Health Perspectives.

[16]  Tom M. L. Wigley,et al.  A simple inverse carbon cycle model , 1991 .

[17]  Peter C. Young,et al.  Proportional-integral-plus (PIP) control of time delay systems , 1998 .

[18]  Nebojsa Nakicenovic,et al.  Avoiding dangerous climate change , 2006 .

[19]  Peter C. Young,et al.  A robust sequential CO2 emissions strategy based on optimal control of atmospheric CO2 concentrations , 2008 .

[20]  James A. Edmonds,et al.  Decision-making frameworks , 2001 .

[21]  R. Houghton Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850 – 2000 , 2003 .

[22]  M. Grubb,et al.  Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement , 1997, Nature.

[23]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[24]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[25]  P. Young,et al.  State space control system design based on non-minimal state-variable feedback: Further generalization and unification results , 2000 .

[26]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[27]  Stephen H. Schneider,et al.  An Overview of ‘Dangerous’ Climate Change , 2005 .

[28]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[29]  P. C. Young,et al.  Chapter 13 Simplicity out of complexity , 2002 .

[30]  Stephen H. Schneider,et al.  Integrated assessment modeling of global climate change: Transparent rational tool for policy making or opaque screen hiding value‐laden assumptions? , 1997 .

[31]  Michael D Mastrandrea,et al.  Probabilistic assessment of "dangerous" climate change and emissions pathways. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Erin Baker,et al.  Uncertainty and learning in a strategic environment: global climate change , 2005 .

[33]  D. Butler Admission on Gulf War vaccines spurs debate on medical records , 1997, Nature.

[34]  A. Jarvis,et al.  Data-Based Mechanistic Modelling, the Global Carbon Cycle and Global Warming , 2002 .

[35]  N. Nakicenovic,et al.  Issues related to mitigation in the long-term context , 2007 .

[36]  P. Sands The United Nations Framework Convention on Climate Change , 1992 .

[37]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[38]  Robert J Lempert,et al.  A new decision sciences for complex systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Schellnhuber,et al.  Geocybernetics: Controlling a Complex Dynamical System Under Uncertainty , 1998, Naturwissenschaften.

[40]  Peter C. Young,et al.  Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis , 1999 .

[41]  Abdulrahman H. Bajodah,et al.  Adaptive non-linear model inversion control of a twin rotor multi-input multi-output system using artificial intelligence , 2007 .

[42]  Peter C. Young,et al.  Direct digital and adaptive control by input-output state variable feedback pole assignment , 1987 .

[43]  Peter C. Young,et al.  The data-based mechanistic approach to the modelling, forecasting and control of environmental systems , 2006, Annu. Rev. Control..

[44]  J. E. Marshall,et al.  Control of Time-Delay Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  Malte Meinshausen,et al.  What does a 2 degree C target mean for greenhouse gas concentrations? - A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates. Chapter 28 , 2006 .