Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation.

Hippocampal theta (3-8 Hz) is a major electrophysiological activity in rodents, which can be found in primates and humans as well. During theta activity, pyramidal cells and different classes of interneurons were shown to discharge at different phases of the extracellular theta. A recent in vitro study has shown that theta-frequency oscillation can be elicited in a hippocampal CA1 slice by the activation of metabotropic glutamate receptors with similar pharmacological and physiological profile that was found in vivo. We constructed a conductance based three-population network model of the hippocampal CA1 region to study the specific roles of neuron types in the generation of the in vitro theta oscillation and the emergent network properties. Interactions between pairs of neuron populations were studied systematically to assess synchronization and delay properties. We showed that the circuitry consisting of pyramidal cells and two types of hippocampal interneurons [basket and oriens lacunosum-moleculare (O-LM) neurons] was able to generate coherent theta-frequency population oscillation. Furthermore, we found that hyperpolarization-activated nonspecific cation current in pyramidal cells, but not in O-LM neurons, plays an important role in the timing of spike generation, and thus synchronization of pyramidal cells. The model was shown to exhibit the same phase differences between neuron population activities found in vivo, supporting the idea that these patterns of activity are determined internal to the hippocampus.

[1]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[2]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J. Rinzel,et al.  Spindle rhythmicity in the reticularis thalami nucleus: Synchronization among mutually inhibitory neurons , 1993, Neuroscience.

[4]  E. Ongini,et al.  Intrinsic and antagonistic effects of beta-carboline FG 7142 on behavioral and EEG actions of benzodiazepines and pentobarbital in cats. , 1983, European journal of pharmacology.

[5]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[6]  R. Vertes,et al.  Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. , 1997, Neuroscience.

[7]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[8]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[9]  D. McCormick,et al.  Periodicity of thalamic spindle waves is abolished by ZD7288,a blocker of Ih. , 1998, Journal of neurophysiology.

[10]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[11]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[12]  Péter Érdi,et al.  Intrahippocampal gamma and theta rhythm generation in a network model of inhibitory interneurons , 2001, Neurocomputing.

[13]  C. H. Vanderwolf,et al.  Neocortical and hippocampal electrical activity following decapitation in the rat , 1988, Brain Research.

[14]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[15]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[16]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[17]  Fiona E. N. LeBeau,et al.  A Model of Atropine‐Resistant Theta Oscillations in Rat Hippocampal Area CA1 , 2002, The Journal of physiology.

[18]  T. Kuner,et al.  Multiple Structural Elements Determine Subunit Specificity of Mg2+ Block in NMDA Receptor Channels , 1996, The Journal of Neuroscience.

[19]  J. B. Ranck,et al.  Generation of theta rhythm in medial entorhinal cortex of freely moving rats , 1980, Brain Research.

[20]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[21]  Nancy Kopell,et al.  Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. , 2005, Journal of neurophysiology.

[22]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[23]  S. Fox Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm , 2004, Experimental Brain Research.

[24]  T. Yamauchi,et al.  The extracellular current blocking effect of cesium chloride on the theta wave in the rabbit hippocampal CA1 region , 2002, Neuroscience Letters.

[25]  J. Lacaille,et al.  Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  M. Lengyel,et al.  Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing , 2003, Hippocampus.

[28]  J. Csicsvari,et al.  Reliability and State Dependence of Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in the Behaving Rat , 1998, Neuron.

[29]  J. Storm,et al.  Two forms of electrical resonance at theta frequencies, generated by M‐current, h‐current and persistent Na+ current in rat hippocampal pyramidal cells , 2002, The Journal of physiology.

[30]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[31]  G Buzsáki,et al.  Interactions between Hippocampus and Medial Septum during Sharp Waves and Theta Oscillation in the Behaving Rat , 1999, The Journal of Neuroscience.

[32]  J. White,et al.  Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[34]  C. H. Vanderwolf,et al.  Hippocampal electrical activity during waking behaviour and sleep: analyses using centrally acting drugs. , 1977, Ciba Foundation symposium.

[35]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[36]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[37]  M. Deschenes,et al.  Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. , 1993, Journal of neurophysiology.

[38]  P. Somogyi,et al.  High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus , 1995, Neuroscience.

[39]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[40]  C. Chapman,et al.  Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. , 1999, Journal of neurophysiology.

[41]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[42]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[44]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[45]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[46]  H. Petsche,et al.  [The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells]. , 1962, Electroencephalography and clinical neurophysiology.

[47]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[48]  Péter Érdi,et al.  Theta-modulated feedforward network generates rate and phase coded firing in the entorhino-hippocampal system , 2004, IEEE Transactions on Neural Networks.

[49]  G. Buzsáki,et al.  Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity‐dependent phase‐precession of action potentials , 1998, Hippocampus.

[50]  W Buño,et al.  Cross-correlation analysis of septohippocampal neurons during theta-rhythm. , 1987, Brain research.

[51]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[52]  T. Freund GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. , 1992, Epilepsy research. Supplement.

[53]  G. Buzsáki,et al.  Operational Dynamics in the Hippocampal-entorhinal Axis , 1998, Neuroscience & Biobehavioral Reviews.

[54]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[55]  James M. Bower,et al.  Spike Frequency Adaptation Affects the Synchronization Properties of Networks of Cortical Oscillators , 1998, Neural Computation.

[56]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  S. Heinemann,et al.  Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems , 1999, Nature Neuroscience.

[58]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[59]  F. H. Lopes da Silva,et al.  Anatomic organization and physiology of the limbic cortex. , 1990, Physiological reviews.

[60]  P. Érdi,et al.  Modulation of septo-hippocampal θ activity by GABAA receptors: an experimental and computational approach 1 1 Supplementary data associated with this article can be found at doi:10.1016/j.neuroscience.2004.03.043. , 2004, Neuroscience.

[61]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[62]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[63]  Freund Tf GABAergic septal and serotonergic median raphe afferents preferentially innervate inhibitory interneurons in the hippocampus and dentate gyrus. , 1992 .

[64]  G. Buzsáki,et al.  Interdependence of Multiple Theta Generators in the Hippocampus: a Partial Coherence Analysis , 1999, The Journal of Neuroscience.

[65]  J. O’Keefe,et al.  The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta , 1998, The European journal of neuroscience.

[66]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[67]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[68]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[69]  Péter Érdi,et al.  Hippocampal rhythm generation: Gamma-related theta-frequency resonance in CA3 interneurons , 2001, Biological Cybernetics.

[70]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[71]  T. H. Bullock,et al.  Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freely-moving rats , 1990, Neuroscience.

[72]  Farzan Nadim,et al.  Modeling the leech heartbeat elemental oscillator II. Exploring the parameter space , 1995, Journal of Computational Neuroscience.

[73]  Xiao-Jing Wang,et al.  Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. , 2002, Journal of neurophysiology.

[74]  A. Alonso,et al.  Cross-correlation analysis of septohippocampal neurons during ≡-rhythm , 1987, Brain Research.

[75]  D M Durand,et al.  Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. , 1994, Journal of neurophysiology.

[76]  Roger D. Traub,et al.  Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances , 1995, Journal of Computational Neuroscience.

[77]  P. Schwartzkroin,et al.  Electrotonic and dye coupling in hippocampal CA1 pyramidal cells in vitro , 1982, Neuroscience.

[78]  B. H. Bland,et al.  Mechanisms of Neural Synchrony in the Septohippocampal Pathways Underlying Hippocampal Theta Generation , 1999, The Journal of Neuroscience.

[79]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[80]  J. Kauer,et al.  Properties of carbachol-induced oscillatory activity in rat hippocampus. , 1997, Journal of neurophysiology.

[81]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[82]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[83]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[84]  F. Strata,et al.  Intrinsic oscillations in CA3 hippocampal pyramids: Physiological relevance to theta rhythm generation , 1998, Hippocampus.

[85]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[86]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.