Super-Eddington Winds from Type I X-Ray Bursts

We present hydrodynamic simulations of spherically symmetric super-Eddington winds from radius-expansion type I X-ray bursts. Previous studies assumed a steady-state wind and treated the mass-loss rate as a free parameter. Using MESA, we follow the multi-zone time-dependent burning, the convective and radiative heating of the atmosphere during the burst rise, and the launch and evolution of the optically thick radiation-driven wind as the photosphere expands outward to radii rph ≳ 100 km. We focus on neutron stars (NSs) accreting pure helium and study bursts over a range of ignition depths. We find that the wind ejects ≈0.2% of the accreted layer, nearly independent of ignition depth. This implies that ≈30% of the nuclear energy release is used to unbind matter from the NS surface. We show that ashes of nuclear burning are ejected in the wind and dominate the wind composition for bursts that ignite at column depths ≳109 g cm−2. The ejecta are composed primarily of elements with mass numbers A > 40, which we find should imprint photoionization edges on the burst spectra. Evidence of heavy-element edges has been reported in the spectra of strong radius-expansion bursts. We find that after ≈1 s, the wind composition transitions from mostly light elements (4He and 12C), which sit at the top of the atmosphere, to mostly heavy elements (A > 40), which sit deeper down. This may explain why the photospheric radii of all superexpansion bursts show a transition after ≈1 s from a superexpansion ( ) to a moderate expansion ( ).

[1]  L. Keek,et al.  Thermonuclear X-ray Bursts , 2017, Timing Neutron Stars: Pulsations, Oscillations and Explosions.

[2]  M. Miller,et al.  Astrophysical Constraints on Dense Matter in Neutron Stars , 2013, Timing Neutron Stars: Pulsations, Oscillations and Explosions.

[3]  Z. Arzoumanian,et al.  NICER Detection of Strong Photospheric Expansion during a Thermonuclear X-Ray Burst from 4U 1820–30 , 2018, 1808.06442.

[4]  Z. Arzoumanian,et al.  Searching for a pulse , 2017 .

[5]  E. Quataert,et al.  Super-Eddington stellar winds: Unifying radiative-enthalpy versus flux-driven models , 2017, 1708.07790.

[6]  T. Dotani,et al.  A broad spectral feature detected during the cooling phase of a type I X-ray burst from GRS 1747-312 with Suzaku , 2017 .

[7]  J. Poutanen,et al.  Detection of burning ashes from thermonuclear X-ray bursts , 2016, 1608.06801.

[8]  Chris L. Fryer,et al.  MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS , 2016, 1611.09937.

[9]  Observational Constraints on Neutron Star Masses and Radii , 2016, 1604.03894.

[10]  C. Matzner,et al.  ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS , 2016, 1602.07318.

[11]  E. Quataert,et al.  Super-Eddington stellar winds driven by near-surface energy deposition , 2015, 1509.06370.

[12]  J. Poutanen,et al.  Models of neutron star atmospheres enriched with nuclear burning ashes , 2015, 1507.01525.

[13]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[14]  D. Psaltis,et al.  THE DENSE MATTER EQUATION OF STATE FROM NEUTRON STAR RADIUS AND MASS MEASUREMENTS , 2015, 1505.05155.

[15]  N. Barrière,et al.  NuSTAR OBSERVATION OF A TYPE I X-RAY BURST FROM GRS 1741.9-2853 , 2014, 1411.4745.

[16]  L. Keek,et al.  Relativistic outflow from two thermonuclear shell flashes on neutron stars , 2014, 1407.0300.

[17]  D. Palmer,et al.  A bright thermonuclear X-ray burst simultaneously observed with Chandra and RXTE , 2013, 1301.2232.

[18]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[19]  Andrew W. Steiner,et al.  THE NEUTRON STAR MASS–RADIUS RELATION AND THE EQUATION OF STATE OF DENSE MATTER , 2012, 1205.6871.

[20]  Astrophysics,et al.  X-ray bursting neutron star atmosphere models using an exact relativistic kinetic equation for Compton scattering , 2012, 1208.1467.

[21]  J. Poutanen,et al.  X-ray bursting neutron star atmosphere models: spectra and color corrections , 2011 .

[22]  Australia.,et al.  RADIUS-EXPANSION BURST SPECTRA FROM 4U 1728−34: AN ULTRACOMPACT BINARY? , 2010, 1009.2296.

[23]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[24]  E. Brown,et al.  THE EQUATION OF STATE FROM OBSERVED MASSES AND RADII OF NEUTRON STARS , 2010, 1005.0811.

[25]  U. Illinois,et al.  Super-Eddington fluxes during thermonuclear X-ray bursts , 2010, 1003.5850.

[26]  G. Baym,et al.  Astrophysical measurement of the equation of state of neutron star matter , 2010, 1002.3153.

[27]  N. Weinberg,et al.  Evidence of heavy-element ashes in thermonuclear X-ray bursts with photospheric superexpansion , 2010, 1001.0900.

[28]  D. Psaltis,et al.  Thermonuclear (Type I) X-Ray Bursts Observed by the Rossi X-Ray Timing Explorer , 2006, astro-ph/0608259.

[29]  P. Jonker,et al.  Six new candidate ultracompact X-ray binaries , 2007, astro-ph/0701810.

[30]  L. Bildsten,et al.  Exposing the Nuclear Burning Ashes of Radius Expansion Type I X-Ray Bursts , 2005, astro-ph/0511247.

[31]  A. Cumming,et al.  Long Type I X-Ray Bursts and Neutron Star Interior Physics , 2005, astro-ph/0508432.

[32]  A. Cumming,et al.  On the possibility of a helium white dwarf donor in the presumed ultracompact binary 2S 0918-549 , 2005, astro-ph/0506666.

[33]  B. A. Brown,et al.  Models for Type I X-Ray Bursts with Improved Nuclear Physics , 2003, astro-ph/0307425.

[34]  A. Cumming Models of Type I X-Ray Bursts from 4U 1820–30 , 2003, astro-ph/0306245.

[35]  L. Bildsten,et al.  New Views of Thermonuclear Bursts , 2003, astro-ph/0301544.

[36]  L. Bildsten,et al.  Rotational Evolution during Type I X-Ray Bursts , 2000, astro-ph/0004347.

[37]  L. Bildsten,et al.  The Ocean and Crust of a Rapidly Accreting Neutron Star: Implications for Magnetic Field Evolution and Thermonuclear Flashes , 1997, astro-ph/9710261.

[38]  L. Bildsten Thermonuclear Burning on Rapidly Accreting Neutron Stars , 1997, astro-ph/9709094.

[39]  C. B. Markwardt,et al.  Calibration of the Rossi X-Ray Timing Explorer Proportional Counter Array , 2005, astro-ph/0511531.

[40]  R. Turolla,et al.  WINDS FROM NEUTRON STARS AND STRONG TYPE I X-RAY BURSTS , 1994, astro-ph/9405065.

[41]  F. Melia,et al.  Quasi-static winds from neutron stars , 1987 .

[42]  B. Paczyński,et al.  Models of radiation-driven winds from general relativistic neutron stars , 1986 .

[43]  T. Quinn,et al.  Stellar winds driven by super-Eddington luminosities , 1984 .

[44]  B. Paczyński Models of X-ray bursters with radius expansion , 1983 .

[45]  S. Miyaji,et al.  Shell flashes on accreting neutron stars and X-ray bursts , 1981 .

[46]  J. Paradijs Possible observational constraints on the mass-radius relation of neutron stars , 1979 .

[47]  S. Woosley,et al.  Presupernova evolution of massive stars. , 1978 .