Aircraft Optimal Terrain/Threat-Based Trajectory Planning and Control

In this paper, single- and multi-objective three-dimensional terrain- and threat-based trajectory planning and control are addressed for optimal time, fuel, and altitude scenarios. To obtain more realistic and feasible trajectories, a high-fidelity, six-degree-of-freedom dynamic model of the aircraft is used that includes accurate aerodynamic and propulsion models in all path-planning scenarios. The paper is composed of two parts. In the first part, optimal trajectories are generated using a global differential-evolution-based optimization algorithm. A comprehensive analysis of the resulting optimal trajectories reveals major characteristics of each scenario, which are generally different. In the second part of the paper, a multi-input, multi-output nonlinear model predictive controller is established to enable the aircraft to track the optimal paths in real time. The controller uses a neurofuzzy predictor model that is trained using the local linear model tree algorithm. A robustness analysis shows that ...

[1]  V. H. L. Cheng,et al.  OPTIMAL TRAJECTORY SYNTHESIS FOR TERRAIN-FOLLOWING FLIGHT , 1991 .

[2]  Siyu Zhang,et al.  Trajectory optimization of multiple quad-rotor UAVs in collaborative assembling task , 2016 .

[3]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[4]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[5]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[6]  Amirreza Kosari,et al.  Novel minimum time trajectory planning in terrain following flights , 2007 .

[7]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[8]  O. Nelles Nonlinear System Identification , 2001 .

[9]  Arthur Richards,et al.  Efficient path optimization with terrain avoidance , 2007 .

[10]  Paul Williams,et al.  Real-Time Computation of Optimal Three-Dimensional Aircraft Trajectories including Terrain-Following , 2006 .

[11]  A. Packard,et al.  Nonlinear Receding Horizon Control of an F-16 Aircraft , 2002 .

[12]  Ping Lu,et al.  Aircraft terrain following based on a nonlinear continuous predictive control approach , 1995 .

[13]  Jiang Chang-sheng,et al.  Short communication: A modified ant optimization algorithm for path planning of UCAV , 2008 .

[14]  Anthony J. Calise,et al.  Trajectory Optimization for Multiple Vehicles Using a Reduced Order Formulation , 2005 .

[15]  Alison Eele,et al.  Path Planning with Avoidance Using Nonlinear Branch-and-Bound , 2007 .

[16]  Iman Khademi,et al.  Optimal three dimensional Terrain Following/Terrain Avoidance for aircraft using direct transcription method , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[17]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  Yang Wei,et al.  U-parameter design for terrain-following flight control , 1993 .

[19]  E. Morelli Global nonlinear parametric modelling with application to F-16 aerodynamics , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[20]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[21]  Oliver Nelles,et al.  Local Linear Neuro-Fuzzy Models: Fundamentals , 2020, Nonlinear System Identification.

[22]  Tea Tusar,et al.  Differential Evolution versus Genetic Algorithms in Multiobjective Optimization , 2007, EMO.

[23]  Rolf Isermann,et al.  Predictive control based on local linear fuzzy models , 1998, Int. J. Syst. Sci..

[24]  B. Conway Spacecraft Trajectory Optimization , 2014 .

[25]  Ping Lu,et al.  Optimal aircraft terrain-following analysis and trajectory generation , 1995 .

[26]  Fariba Fahroo,et al.  Optimal feedback control laws by Legendre pseudospectral approximations , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[27]  O. Abdelkhalik,et al.  Fast Initial Trajectory Design for Low-Thrust Restricted-Three-Body Problems , 2015 .

[28]  Eric N. Johnson,et al.  On-Line Trajectory Optimization Including Threats and Targets , 2004 .

[29]  Bruce A. Conway,et al.  Spacecraft Trajectory Optimization: Spacecraft Trajectory Optimization Using Direct Transcription and Nonlinear Programming , 2010 .

[30]  Seid H. Pourtakdoust,et al.  Integrated motion planning and trajectory control system for unmanned air vehicles , 2013 .

[31]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[32]  Patrick Siarry,et al.  Enhanced simulated annealing for globally minimizing functions of many-continuous variables , 1997, TOMS.

[33]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[34]  Wei Gao,et al.  Aircraft route optimization using genetic algorithms , 1997 .

[35]  Seid H. Pourtakdoust,et al.  Optimal maneuver-based motion planning over terrain and threats using a dynamic hybrid PSO algorithm , 2013 .

[36]  Anthony J. Calise,et al.  On-Line Trajectory Optimization Including Moving Threats and Targets , 2004 .

[37]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[38]  Tae Soo No,et al.  Control and simulation of arbitrary flight trajectory-tracking , 2005 .

[39]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[40]  P. L. Deal,et al.  Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. [F-16] , 1979 .

[41]  Kai Virtanen,et al.  Automated Generation of Realistic Near-Optimal Aircraft Trajectories , 2008 .

[42]  L. Sonneveldt,et al.  Nonlinear F-16 Model Description , 2006 .

[43]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[44]  Cui Pingyuan,et al.  A study of terrain following controller based on backstepping and variable structure control , 2004, Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788).

[45]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[46]  Jonathan P. How,et al.  Aircraft trajectory planning with collision avoidance using mixed integer linear programming , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[47]  Angelica Mendoza-Torres,et al.  Stability of Gain Scheduling Control for Aircraft with Highly Nonlinear Behavior , 2014 .

[48]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[49]  Paul Williams,et al.  Three-dimensional aircraft terrain-following via real-time optimal control , 2007 .

[50]  S. J. Asseo Terrain following/terrain avoidance path optimization using the method of steepest descent , 1988, Proceedings of the IEEE 1988 National Aerospace and Electronics Conference.