Thermodynamic and logical reversibilities revisited

We review and investigate the general theory of the thermodynamics of computation, and derive the fundamental inequalities that set the lower bounds of the work requirement and the heat emission during a computation. These inequalities constitute the generalized Landauer principle, where the information contents are involved in the second law of thermodynamics. We discuss in detail the relationship between the thermodynamic and logical reversibilities; the former is related to the entropy production in the total system including a heat bath, while the latter is related to the entropy change only in the logical states of the memory. In particular, we clarify that any logically irreversible computation can be performed in a thermodynamically reversible manner in the quasi-static limit, which does not contradict the conventional Landauer principle. Our arguments would serve as the theoretical foundation of the thermodynamics of computation in terms of modern statistical physics.

[1]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .

[4]  L. Brillouin,et al.  Science and information theory , 1956 .

[5]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[6]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[7]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[8]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[9]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Shizume Heat generation required by information erasure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Rolf Landauer,et al.  Minimal Energy Requirements in Communication , 1996, Science.

[13]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[14]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[15]  I. Prigogine,et al.  Book Review: Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1998 .

[16]  M. Nielsen,et al.  Information-theoretic approach to quantum error correction and reversible measurement , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  C. Jarzynski Hamiltonian Derivation of a Detailed Fluctuation Theorem , 1999, cond-mat/9908286.

[18]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  A Quantum Fluctuation Theorem , 2000, cond-mat/0007360.

[20]  Touchette,et al.  Information-theoretic limits of control , 1999, Physical review letters.

[21]  Hal Tasaki Jarzynski Relations for Quantum Systems and Some Applications , 2000 .

[22]  A E Allahverdyan,et al.  Breakdown of the Landauer bound for information erasure in the quantum regime. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[24]  Charles H. Bennett,et al.  Notes on Landauer's Principle, Reversible Computation, and Maxwell's Demon , 2002, physics/0210005.

[25]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[26]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[27]  O. J. E. Maroney The (absence of a) relationship between thermodynamic and logical reversibility , 2004 .

[28]  Dissipationless Information Erasure and the Breakdown of Landauer's Principle , 2005 .

[29]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[30]  John D. Norton,et al.  Eaters of the Lotus: Landauer's Principle and the Return of Maxwell's Demon , 2005 .

[31]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[32]  H. Büttner,et al.  N ov 2 00 7 Information and entropy in quantum Brownian motion : Thermodynamic entropy versus von Neumann entropy , 2008 .

[33]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[34]  M. Feito,et al.  Thermodynamics of feedback controlled systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  E. Lutz,et al.  Memory erasure in small systems. , 2008, Physical review letters.

[38]  Kurt Jacobs,et al.  Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements , 2009, 0906.4146.

[39]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[40]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[41]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[43]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[44]  Youhei Fujitani,et al.  Jarzynski Equality Modified in the Linear Feedback System , 2010 .

[45]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[46]  E. Lutz,et al.  Landauer's principle in the quantum regime. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Masahito Ueda,et al.  Erratum: Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure [Phys. Rev. Lett. 102, 250602 (2009)] , 2011 .

[48]  Hal Tasaki,et al.  Quantum Jarzynski-Sagawa-Ueda Relations , 2010, 1012.2753.

[49]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[50]  On thermodynamic and microscopic reversibility , 2011 .

[51]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[52]  Jordan M. Horowitz,et al.  Thermodynamic reversibility in feedback processes , 2011, 1104.0332.

[53]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[54]  Stephen M. Barnett,et al.  Information erasure without an energy cost , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Takahiro Sagawa,et al.  Quantum Szilard engine. , 2010, Physical review letters.

[56]  J. Bokor,et al.  Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. , 2011, Physical review letters.

[57]  Jordan M. Horowitz,et al.  Designing optimal discrete-feedback thermodynamic engines , 2011, 1110.6808.

[58]  U. Seifert,et al.  Extracting work from a single heat bath through feedback , 2011, 1102.3826.

[59]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[60]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[61]  Lectures on quantum computing, thermodynamics and statistical physics , 2012 .

[62]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[63]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[64]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[65]  Udo Seifert,et al.  Thermodynamics of genuine nonequilibrium states under feedback control. , 2011, Physical review letters.

[66]  T. Sagawa Second Law-Like Inequalities with Quantum Relative Entropy: An Introduction , 2012, 1202.0983.

[67]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  H. Kantz,et al.  Differential Landauer's principle , 2013, 1302.6478.

[69]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Hal Tasaki Unified Jarzynski and Sagawa-Ueda relations for Maxwell's demon , 2013 .

[71]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[72]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[73]  Sosuke Ito,et al.  Information thermodynamics on causal networks. , 2013, Physical review letters.

[74]  Jordan M Horowitz,et al.  Imitating chemical motors with optimal information motors. , 2012, Physical review letters.

[75]  Gernot Schaller,et al.  Thermodynamics of a physical model implementing a Maxwell demon. , 2012, Physical review letters.

[76]  Takahiro Sagawa,et al.  Role of mutual information in entropy production under information exchanges , 2013, 1307.6092.

[77]  A. Bérut,et al.  Detailed Jarzynski equality applied to a logically irreversible procedure , 2013, 1302.4417.

[78]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[79]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[80]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.