Towards an Integral Approach for Modeling Causality

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Towards an Integral Approach for Modeling Causality Stijn Meganck

[1]  Prakash P. Shenoy,et al.  A Bayesian network approach to making inferences in causal maps , 2001, Eur. J. Oper. Res..

[2]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[3]  Frederick Eberhardt,et al.  N-1 Experiments Suffice to Determine the Causal Relations Among N Variables , 2006 .

[4]  Jin Tian,et al.  A general identification condition for causal effects , 2002, AAAI/IAAI.

[5]  Fabio Crestani,et al.  Probability Kinematics in Information Retrieval a case study , 1995 .

[6]  Mikko Koivisto,et al.  Advances in Exact Bayesian Structure Discovery in Bayesian Networks , 2006, UAI.

[7]  Bernard Manderick,et al.  Inference in multi-agent causal models , 2007, Int. J. Approx. Reason..

[8]  Jin Tian,et al.  Generating Markov Equivalent Maximal Ancestral Graphs by Single Edge Replacement , 2005, UAI.

[9]  Jesper Tegnér,et al.  Towards scalable and data efficient learning of Markov boundaries , 2007, Int. J. Approx. Reason..

[10]  Bernard Manderick,et al.  Identification in Chain Multi-Agent Causal Models , 2005, FLAIRS Conference.

[11]  B. Manderick,et al.  UnCaDo: Unsure Causal Discovery , 2008 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[14]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[15]  Judea Pearl,et al.  Dormant Independence , 2008, AAAI.

[16]  Wesley C. Salmon,et al.  Causality and Explanation , 1998 .

[17]  André Elisseeff,et al.  Using Markov Blankets for Causal Structure Learning , 2008, J. Mach. Learn. Res..

[18]  Kevin Murphy,et al.  Active Learning of Causal Bayes Net Structure , 2006 .

[19]  Kevin P. Murphy,et al.  Exact Bayesian structure learning from uncertain interventions , 2007, AISTATS.

[20]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[21]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[22]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[23]  Yang Xiang,et al.  PROBABILISTIC REASONING IN MULTIAGENT SYSTEMS: A GRAPHICAL MODELS APPROACH, by Yang Xiang, Cambridge University Press, Cambridge, 2002, xii + 294 pp., ISBN 0-521-81308-5 (Hardback, £45.00). , 2002, Robotica.

[24]  Bernard Manderick,et al.  Causal Inference in Multi-Agent Causal Models , 2005, BNAIC.

[25]  Richard Scheines,et al.  Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data , 2000 .

[26]  P. Spirtes,et al.  Ancestral graph Markov models , 2002 .

[27]  Daphne Koller,et al.  Active Learning for Structure in Bayesian Networks , 2001, IJCAI.

[28]  Liviu Badea Inferring large gene networks from microarray data: a constraint-based approach , 2003 .

[29]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[30]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[31]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[32]  Multi-Agent Causal Models: Inference and Learning , 2005 .

[33]  Gregory F. Cooper,et al.  Causal Discovery from a Mixture of Experimental and Observational Data , 1999, UAI.

[34]  Christopher Meek,et al.  Causal inference and causal explanation with background knowledge , 1995, UAI.

[35]  Rong Chen,et al.  Learning Bayesian Network Structure from Distributed Data , 2003, SDM.

[36]  Weiru Liu,et al.  Learning belief networks from data: an information theory based approach , 1997, CIKM '97.

[37]  R. Scheines,et al.  Interventions and Causal Inference , 2007, Philosophy of Science.

[38]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[39]  N. Sheehan,et al.  Mendelian randomization as an instrumental variable approach to causal inference , 2007, Statistical methods in medical research.

[40]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[41]  J. Pearl,et al.  Studies in causal reasoning and learning , 2002 .

[42]  Philippe Leray,et al.  An integral approach to causal inference with latent variables , 2007 .

[43]  T. Haavelmo The Statistical Implications of a System of Simultaneous Equations , 1943 .

[44]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[45]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[46]  Jiji Zhang,et al.  A Transformational Characterization of Markov Equivalence for Directed Acyclic Graphs with Latent Variables , 2005, UAI.

[47]  Mikko Koivisto,et al.  Exact Bayesian Structure Discovery in Bayesian Networks , 2004, J. Mach. Learn. Res..

[48]  Fabio Gagliardi Cozman,et al.  Generating Random Bayesian Networks with Constraints on Induced Width , 2004, ECAI.

[49]  B. Shipley Cause and correlation in biology , 2000 .

[50]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[51]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[52]  Bernard Manderick,et al.  Causal Graphical Models with Latent Variables: Learning and Inference , 2007, ECSQARU.

[53]  Frederick Eberhardt,et al.  On the Number of Experiments Sufficient and in the Worst Case Necessary to Identify All Causal Relations Among N Variables , 2005, UAI.

[54]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[55]  K. Sivakumar,et al.  Collective mining of Bayesian networks from distributed heterogeneous data , 2003, Knowledge and Information Systems.

[56]  Bernard Manderick,et al.  Identifiability of causal effects in a multi-agent causal model , 2003, IEEE/WIC International Conference on Intelligent Agent Technology, 2003. IAT 2003..

[57]  Peter Spirtes,et al.  A Characterization of Markov Equivalence Classes for Ancestral Graphical Models , 2005 .

[58]  Bernard Manderick,et al.  Learning Semi-Markovian Causal Models using Experiments , 2006, Probabilistic Graphical Models.

[59]  Jon Williamson,et al.  Causality and Probability in the Sciences , 2007 .

[60]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[61]  Bernard Manderick,et al.  Learning Causal Bayesian Networks from Observations and Experiments: A Decision Theoretic Approach , 2006, MDAI.

[62]  Thomas S. Richardson,et al.  Causal Inference in the Presence of Latent Variables and Selection Bias , 1995, UAI.

[63]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[64]  R. W. Robinson Counting unlabeled acyclic digraphs , 1977 .

[65]  Jin Tian,et al.  On the Testable Implications of Causal Models with Hidden Variables , 2002, UAI.

[66]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[67]  Jiji Zhang,et al.  Causal Inference and Reasoning in Causally Insu-cient Systems , 2006 .

[68]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .