A Three-Terminal Silicon-PMOSFET-Like Light-Emitting Device (LED) for Optical Intensity Modulation

A Si- p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-like LED has been developed for light emission modulation. In contrast to a two-terminal Si-diode LED modulated by current signal, a major advantage of this three-terminal Si-PMOSFET LED is that the optical intensity modulation can be controlled by gate voltage signal, a standard CMOSFET operation to ease both logic circuit implementation and light modulation. The gate applied voltage induces carrier concentration modulation at both channel and source/drain region under the gate, thus modulating electric-field distribution and its light emission. Fabricated in a standard CMOS process technology, this Si-PMOSFET LED ensures its potential on realizing silicon optoelectronic integration.

[1]  Jurgen Michel,et al.  Direct-gap optical gain of Ge on Si at room temperature. , 2009, Optics letters.

[2]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[3]  C. Bongiorno,et al.  Quantum Dot Materials and Devices for Light Emission in Silicon , 2002, 32nd European Solid-State Device Research Conference.

[4]  Di Liang,et al.  Hybrid Silicon Lasers: The Final Frontier to Integrated Computing , 2010 .

[5]  C. Hu,et al.  Lucky-electron model of channel hot-electron injection in MOSFET'S , 1984 .

[6]  T. Matsuda,et al.  A study on hot-carrier-induced photoemission in n-MOSFETs under dynamic operation , 1999, ICMTS 2000. Proceedings of the 2000 International Conference on Microelectronic Test Structures (Cat. No.00CH37095).

[7]  A. G. Chynoweth,et al.  Photon Emission from Avalanche Breakdown in Silicon , 1956 .

[8]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[9]  A. Toriumi,et al.  A study of photon emission from n-channel MOSFET's , 1987, IEEE Transactions on Electron Devices.

[10]  Kevin P. Homewood,et al.  Visible photoluminescence at room temperature from microcrystalline silicon precipitates in SiO2 formed by ion implantation , 1995 .

[11]  M. Fisher,et al.  Large-scale photonic integrated circuits , 2005, 2011 ICO International Conference on Information Photonics.

[12]  Lukas W. Snyman,et al.  Injection-Avalanche-Based n+pn Silicon Complementary Metal–Oxide–Semiconductor Light-Emitting Device (450–750 nm) with 2-Order-of-Magnitude Increase in Light Emission Intensity , 2007 .

[13]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[14]  E. Seevinck,et al.  An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface , 1999, IEEE Electron Device Letters.

[15]  M. Plessis,et al.  Two- and multi-terminal silicon light emitting devices in standard CMOS/BiCMOS IC technology , 2004 .

[16]  David A. B. Miller,et al.  Silicon integrated circuits shine , 1996, Nature.

[17]  Nikos Pleros,et al.  Optical Interconnects Using Plasmonics and Si-Photonics , 2011, IEEE Photonics Journal.

[18]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[19]  E. Takeda,et al.  Hot-carrier effects in submicrometre MOS VLSIs , 1984 .

[20]  A. Toriumi Experimental study of hot carriers in small size Si-MOSFETs , 1989 .

[21]  M. Morschbach,et al.  Visible Light Emission by a Reverse-Biased Integrated Silicon Diode , 2007, IEEE Transactions on Electron Devices.

[22]  Peter Seitz,et al.  Light-emitting devices in industrial CMOS technology , 1993 .

[23]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[24]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[25]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[26]  R. Newman,et al.  Visible Light from a Silicon p − n Junction , 1955 .

[27]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[28]  Wei Wang,et al.  CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection , 2011 .

[29]  Bude,et al.  Hot-carrier luminescence in Si. , 1992, Physical review. B, Condensed matter.

[30]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[31]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[32]  D. Leong,et al.  A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm , 1997, Nature.

[33]  X. Sun Ge-on-Si light-emitting materials and devices for silicon photonics , 2009 .

[34]  Eiji Takeda,et al.  Hot-Carrier Effects in MOS Devices , 1995 .

[35]  A. S. Grove,et al.  Effect of surface fields on the breakdown voltage of planar silicon p-n junctions , 1967 .

[36]  E. Kamieniecki Hot Carriers in Microplasmas and their Radiation in Germanium and Silicon , 1964, September 1.

[37]  A. G. Chynoweth,et al.  Ionization Rates for Electrons and Holes in Silicon , 1958 .

[38]  Chenming Hu,et al.  Hot-electron-induced photon and photocarrier generation in Silicon MOSFET's , 1984, IEEE Transactions on Electron Devices.

[39]  Jurgen Michel,et al.  Direct gap photoluminescence of n-type tensile-strained Ge-on-Si , 2009 .

[40]  Sebania Libertino,et al.  Design, fabrication, and testing of an integrated Si-based light modulator , 2003 .

[41]  T. Stoica,et al.  Room-temperature SiGe light-emitting diodes , 1998 .

[42]  M. du Plessis,et al.  Silicon light emitting devices in standard CMOS technology , 2001, 2001 International Semiconductor Conference. CAS 2001 Proceedings (Cat. No.01TH8547).

[43]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[44]  Spectroscopic observations of photon emissions in n-MOSFETs in the saturation region , 1996 .

[45]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[46]  Osamu Wada,et al.  Recent progress in optoelectric integrated circuits (OEIC's) , 1986 .

[47]  Graham T. Reed,et al.  Erbium-doped silicon and porous silicon for optoelectronics , 1996 .

[48]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.