An ADMM Approach for Constructing Abnormal Subspace of Sparse PCA

[1]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[2]  Jennifer Rexford,et al.  Sensitivity of PCA for traffic anomaly detection , 2007, SIGMETRICS '07.

[3]  Jing Lei,et al.  Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA , 2013, NIPS.

[4]  I. Jolliffe Principal Component Analysis , 2005 .

[5]  Vikram Garaniya,et al.  A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes , 2016 .

[6]  Shiqian Ma Alternating Direction Method of Multipliers for Sparse Principal Component Analysis , 2011, Journal of the Operations Research Society of China.

[7]  Hongliang Fei,et al.  A Family of Joint Sparse PCA Algorithms for Anomaly Localization in Network Data Streams , 2013, IEEE Transactions on Knowledge and Data Engineering.

[8]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[9]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[10]  Lester W. Mackey,et al.  Deflation Methods for Sparse PCA , 2008, NIPS.

[11]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[12]  Di Tang,et al.  Fault Detection and Diagnosis Based on Sparse PCA and Two-Level Contribution Plots , 2017 .

[13]  Ying Zhao,et al.  Abnormal Subspace Sparse PCA for Anomaly Detection and Interpretation , 2016, ArXiv.

[14]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[15]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .