Constraint-based LN-curves

We consider the design of parametric curves from geometric constraints such as distance from lines or points and tangency to lines or circles. We solve the Hermite problem with such additional geometric constraints. We use a family of curves with linearly varying normals, LN curves, over the parameter interval [0, u]. The nonlinear equations that arise can be of algebraic degree 60. We solve them using the GPU on commodity graphics cards and achieve interactive performance. The family of curves considered has the additional property that the convolution of two curves in the family is again a curve in the family, assuming common Gauss maps, making the class more useful to applications. We also remark on the larger class of LN curves and how it relates to Bézier curves.

[1]  Bert Jüttler,et al.  Exact Parameterization of Convolution Surfaces and Rational Surfaces with Linear Normals , 2005 .

[2]  Zbynek Sír,et al.  Hermite interpolation by hypocycloids and epicycloids with rational offsets , 2010, Comput. Aided Geom. Des..

[3]  Tae-wan Kim,et al.  Finding the best conic approximation to the convolution curve of two compatible conics based on Hausdorff distance , 2009, Comput. Aided Des..

[4]  Bert Jüttler,et al.  Volumes with piecewise quadratic medial surface transforms: Computation of boundaries and trimmed offsets , 2010, Comput. Aided Des..

[5]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[6]  C. M. Ho Geometric Constraints for CAGD , 1995 .

[7]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[8]  Dominique Michelucci,et al.  Solving geometric constraints by homotopy , 1995, IEEE Trans. Vis. Comput. Graph..

[9]  Bruce R. Piper,et al.  Rational cubic spirals , 2008, Comput. Aided Des..

[10]  Gilles Trombettoni,et al.  Decomposition of Geometric Constraint Systems: a Survey , 2006, Int. J. Comput. Geom. Appl..

[11]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[12]  Maria Lucia Sampoli Computing the convolution and the Minkowski sum of surfaces , 2005, SCCG '05.

[13]  Paul Rosen,et al.  Hardware Assistance for Constrained Circle Constructions I: Sequential Problems , 2010 .

[14]  Vincent Cheutet,et al.  Constraint Modeling for Curves and Surfaces in CAGD: a Survey , 2007, Int. J. Shape Model..

[15]  Christoph M. Hoffmann,et al.  Constraint-based parametric conics for CAD , 1996, Comput. Aided Des..

[16]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms , 2001, J. Symb. Comput..

[17]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[18]  Young Joon Ahn,et al.  Constraint-based LN curves , 2012, Comput. Aided Geom. Des..

[19]  Martin Peternell,et al.  Convolution surfaces of quadratic triangular Bézier surfaces , 2008, Comput. Aided Geom. Des..

[20]  Christoph M. Hoffmann,et al.  Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD , 2001, J. Symb. Comput..

[21]  Bert Jüttler,et al.  Rational surfaces with linear normals and their convolutions with rational surfaces , 2006, Comput. Aided Geom. Des..

[22]  Gershon Elber,et al.  Polynomial/Rational Approximation of Minkowski Sum Boundary Curves , 1998, Graph. Model. Image Process..

[23]  Xiao-Shan Gao,et al.  A C-tree decomposition algorithm for 2D and 3D geometric constraint solving , 2006, Comput. Aided Des..

[24]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[25]  Paul Rosen,et al.  Hardware Assistance for Constrained Circle Constructions II: Cluster Merging Problems , 2010 .

[26]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[27]  PARAMETRIC MODELING,et al.  PARAMETRIC MODELING , 2004 .