Understanding movement data and movement processes: current and emerging directions.

Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi-behavioral analysis, hidden markov models, and state-space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.

[1]  Johannes Ledolter,et al.  State-Space Analysis of Wildlife Telemetry Data , 1991 .

[2]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[3]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[4]  Chris J. Johnson,et al.  Unrealistic animal movement rates as behavioural bouts: a reply , 2006 .

[5]  B. Manly,et al.  Resource selection by animals: statistical design and analysis for field studies. , 1994 .

[6]  Bruce T. Milne,et al.  Lessons from applying fractal models to landscape patterns , 1991 .

[7]  Daniel P. Costa,et al.  Fractal landscape method: an alternative approach to measuring area-restricted searching behavior , 2007, Journal of Experimental Biology.

[8]  Peter Turchin,et al.  Fractal Analyses of Animal Movement: A Critique , 1996 .

[9]  Benjamin D. Dalziel,et al.  Fitting Probability Distributions to Animal Movement Trajectories: Using Artificial Neural Networks to Link Distance, Resources, and Memory , 2008, The American Naturalist.

[10]  Juan Manuel Morales,et al.  Behavior at Habitat Boundaries Can Produce Leptokurtic Movement Distributions , 2002, The American Naturalist.

[11]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[12]  Paul G. Blackwell,et al.  Bayesian inference for Markov processes with diffusion and discrete components , 2003 .

[13]  Peter A. Burrough,et al.  Using fractal dimensions for characterizing tortuosity of animal trails , 1988 .

[14]  S. Levin The problem of pattern and scale in ecology , 1992 .

[15]  Bruce T. Milne,et al.  Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle's perspective , 1989, Landscape Ecology.

[16]  Sasha R. X. Dall,et al.  Information and its use by animals in evolutionary ecology. , 2005, Trends in ecology & evolution.

[17]  Chris J. Johnson,et al.  A MULTISCALE BEHAVIORAL APPROACH TO UNDERSTANDING THE MOVEMENTS OF WOODLAND CARIBOU , 2002 .

[18]  Daniel Fortin,et al.  Adaptive models for large herbivore movements in heterogeneous landscapes , 2005, Landscape Ecology.

[19]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[20]  Uno Wennergren,et al.  Connecting landscape patterns to ecosystem and population processes , 1995, Nature.

[21]  Janneke HilleRisLambers,et al.  ESTIMATING POPULATION SPREAD: WHAT CAN WE FORECAST AND HOW WELL? , 2003 .

[22]  Torkild Tveraa,et al.  USING FIRST‐PASSAGE TIME IN THE ANALYSIS OF AREA‐RESTRICTED SEARCH AND HABITAT SELECTION , 2003 .

[23]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[24]  Chris J. Johnson,et al.  Movement parameters of ungulates and scale‐specific responses to the environment , 2002 .

[25]  W. G. SPENCE PATERSON The New Volcanic Island off Iceland , 1884, Nature.

[26]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[27]  P. Kareiva Population dynamics in spatially complex environments: theory and data , 1990 .

[28]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[29]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[30]  Simon A. Levin,et al.  A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen , 1989 .

[31]  明 大久保,et al.  Diffusion and ecological problems : mathematical models , 1980 .

[32]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[33]  J. Roughgarden,et al.  The Impact of Directed versus Random Movement on Population Dynamics and Biodiversity Patterns , 2005, The American Naturalist.

[34]  S. Levin THE PROBLEM OF PATTERN AND SCALE IN ECOLOGY , 1992 .

[35]  T. Benton,et al.  Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics , 2005, Biological reviews of the Cambridge Philosophical Society.

[36]  Ian D Jonsen,et al.  Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. , 2006, The Journal of animal ecology.

[37]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[38]  Paul R Moorcroft,et al.  Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone , 2006, Proceedings of the Royal Society B: Biological Sciences.

[39]  Philippe Gaspar,et al.  A state-space model to derive bluefin tuna movement and habitat from archival tags , 2005 .

[40]  Ian D. Jonsen,et al.  Identifying leatherback turtle foraging behaviour from satellite telemetry using a switching state-space model , 2007 .

[41]  L. M. Marsh,et al.  The form and consequences of random walk movement models , 1988 .

[42]  Dale L. Zimmerman,et al.  An animal movement model incorporating home range and habitat selection , 2008, Environmental and Ecological Statistics.

[43]  J. Klomp,et al.  A review and synthesis , 2010 .

[44]  Patrick J Butler,et al.  Biotelemetry: a mechanistic approach to ecology. , 2004, Trends in ecology & evolution.

[45]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[46]  S. Åkesson,et al.  The implications of location accuracy for the interpretation of satellite-tracking data , 2001, Animal Behaviour.

[47]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[48]  John R. Sibert,et al.  Possible Models for Combining Tracking Data with Conventional Tagging Data , 2001 .

[49]  Arild O. Gautestad,et al.  Intrinsic Scaling Complexity in Animal Dispersion and Abundance , 2004, The American Naturalist.

[50]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[51]  R. Sibly,et al.  Splitting behaviour into bouts , 1990, Animal Behaviour.

[52]  A. M. Edwards,et al.  Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer , 2007, Nature.

[53]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[54]  Otso Ovaskainen,et al.  HABITAT-SPECIFIC MOVEMENT PARAMETERS ESTIMATED USING MARK–RECAPTURE DATA AND A DIFFUSION MODEL , 2004 .

[55]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[56]  Paul R. Moorcroft,et al.  Home range analysis using a mechanistic home range model , 1999 .

[57]  Matthew H. Godfrey,et al.  Satellite tracking of sea turtles: Where have we been and where do we go next? , 2008 .

[58]  Elja Arjas,et al.  Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. , 2008, Ecology.

[59]  L. Mark Berliner,et al.  Hierarchical Bayesian Time Series Models , 1996 .

[60]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[61]  Dean P. Anderson,et al.  State-space models link elk movement patterns to landscape characteristics in Yellowstone National Park , 2007 .

[62]  Janneke HilleRisLambers,et al.  Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests , 1999 .

[63]  Alan R. Johnson,et al.  Diffusion in Fractcal Landscapes: Simulations and Experimental Studies of Tenebrionid Beetle Movements , 1992 .

[64]  W. R. Howard,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2005 .

[65]  Mark S. Boyce,et al.  A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales , 2004 .

[66]  Stephen P. Ellner,et al.  SCALING UP ANIMAL MOVEMENTS IN HETEROGENEOUS LANDSCAPES: THE IMPORTANCE OF BEHAVIOR , 2002 .

[67]  D. Haydon Models for Ecological Data: An Introduction , 2008 .

[68]  K. Eckert,et al.  Modeling loggerhead turtle movement in the Mediterranean: importance of body size and oceanography. , 2008, Ecological applications : a publication of the Ecological Society of America.

[69]  William F. Fagan,et al.  Search and navigation in dynamic environments – from individual behaviors to population distributions , 2008 .

[70]  S. L. Lima,et al.  Towards a behavioral ecology of ecological landscapes. , 1996, Trends in ecology & evolution.

[71]  H. Fritz,et al.  Scale–dependent hierarchical adjustments of movement patterns in a long–range foraging seabird , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  Paul R Moorcroft,et al.  Mechanistic home range models and resource selection analysis: a reconciliation and unification. , 2006, Ecology.

[73]  James S. Clark,et al.  Invasion by Extremes: Population Spread with Variation in Dispersal and Reproduction , 2001, The American Naturalist.

[74]  Vilis O. Nams,et al.  Using animal movement paths to measure response to spatial scale , 2005, Oecologia.

[75]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[76]  Paul G. Blackwell,et al.  Random diffusion models for animal movement , 1997 .

[77]  Kimberly A. With Using fractal analysis to assess how species perceive landscape structure , 2004, Landscape Ecology.

[78]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[79]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[80]  Ken B. Newman,et al.  STATE-SPACE MODELING OF ANIMAL MOVEMENT AND MORTALITY WITH APPLICATION TO SALMON , 1998 .

[81]  T. Louis,et al.  Bayes and Empirical Bayes Methods for Data Analysis. , 1997 .

[82]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[83]  Vilis O Nams,et al.  Improving Accuracy and Precision in Estimating Fractal Dimension of Animal movement paths , 2006, Acta biotheoretica.

[84]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[85]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[86]  Peter Turchin,et al.  Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers , 1991 .