A review of terrestrial radar interferometry for measuring surface change in the geosciences

This paper presents a review of the current state of the art in the use of terrestrial radar interferometry for the detection of surface changes related to mass movement. Different hardware‐types and acquisition concepts are described, which use either real or synthetic aperture for radar image formation. We present approaches for data processing procedures, paying special attention to the separation of high resolution displacement information from atmospheric phase variations. Recent case studies are used to illustrate applications in terrestrial radar interferometry for change detection. Applications range from detection and quantification of very slow moving (millimeters to centimeters per year) displacements in rock walls from repeat monitoring, to rapid processes resulting in fast displacements (~50 m/yr) acquired during single measurement campaigns with durations of only a few hours. Fast and episodic acting processes such as rockfall and snow avalanches can be assessed qualitatively in the spatial domain by mapping decorrelation caused by those processes. A concluding guide to best practice outlines the necessary preconditions that have to be fulfilled for successful application of the technique, as well as in areas characterized by rapid decorrelation. Empirical data from a Ku‐band sensor show the range of temporal decorrelation of different surfaces after more than two years for rock‐surfaces and after a few seconds to minutes in vegetated areas during windy conditions. The examples show that the displacement field can be measured for landslides in dense grassland, ice surfaces on flowing glaciers and snowpack creep. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  G. B. Crosta,et al.  Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide , 2014, Landslides.

[2]  Tazio Strozzi,et al.  Monitoring of dynamic changes in alpine snow with terrestrial radar imagery , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[3]  Guido Luzi,et al.  A review of ground-based SAR interferometry for deformation measurement , 2014 .

[4]  Guido Luzi,et al.  Discontinuous GBSAR deformation monitoring , 2014 .

[5]  Dirk Rieke-Zapp,et al.  Registration And Visualisation Of Deformation Maps From Terrestrial Radar Interferometry Using Photogrammetry And Structure From Motion , 2014 .

[6]  Tomokazu Kobayashi Remarkable ground uplift and reverse fault ruptures for the 2013 Bohol earthquake (Mw 7.1), Philippines, revealed by SAR pixel offset analysis , 2014, Geoscience Letters.

[7]  Andreas Wiesmann,et al.  Terrestrial Radar Interferometric Measurement of Hillslope Deformation and Atmospheric Disturbances in the Illgraben Debris-Flow Catchment, Switzerland , 2014, IEEE Geoscience and Remote Sensing Letters.

[8]  Andreas Kääb,et al.  Surface kinematics of periglacial sorted circles using structure-from-motion technology , 2013 .

[9]  Wei Zhou,et al.  High resolution displacement monitoring of a slow velocity landslide using ground based radar interferometry , 2013 .

[10]  N. Casagli,et al.  Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): Integration of GB-InSAR and geomorphological observations , 2013 .

[11]  Michel Jaboyedoff,et al.  Experiences from site-specific landslide early warning systems , 2013 .

[12]  F. Agliardi,et al.  Structurally-controlled instability, damage and slope failure in a porphyry rock mass , 2013 .

[13]  Tazio Strozzi,et al.  Natural versus anthropogenic subsidence of Venice , 2013, Scientific Reports.

[14]  Christian Trampuz,et al.  The novel FastGBSAR sensor: Deformation monitoring for dike failure prediction , 2013, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[15]  Jordi Corominas,et al.  Non-interferometric GB-SAR measurement: application to the Vallcebre landslide (eastern Pyrenees, Spain) , 2013 .

[16]  K. S. Osasan Open-cast mine slope deformation and failure mechanisms interpreted from slope radar monitoring , 2013 .

[17]  Peter Molnar,et al.  Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben , 2012 .

[18]  Nicola Casagli,et al.  Ruinon landslide (Valfurva, Italy) activity in relation to rainfall by means of GBInSAR monitoring , 2012, Landslides.

[19]  T. Dixon,et al.  Emerging Technology Monitors Ice-Sea Interface at Outlet Glaciers , 2012 .

[20]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[21]  Ian M. Howat,et al.  Monitoring a glacier in southeastern Iceland with the portable Terrestrial Radar Interferometer , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Claudia Notarnicola,et al.  Retrieval of 3D-glacier movement by high resolution X-band SAR data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Adriano Meta,et al.  Introduction to the new metasensing ground-based SAR: Technical description and data analysis , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[24]  S. Springman,et al.  Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives , 2012 .

[25]  Christophe Delacourt,et al.  Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations , 2012 .

[26]  Charles Werner,et al.  The GPRI multi-mode differential interferometric radar for ground-based observations , 2012 .

[27]  Albert Aguasca,et al.  A new approach for Atmospheric Phase Screen compensation in Ground-Based SAR over areas with steep topography , 2012 .

[28]  Urs Wegmüller,et al.  Topography Mapping With a Portable Real-Aperture Radar Interferometer , 2012, IEEE Geoscience and Remote Sensing Letters.

[29]  A. Hooper,et al.  Recent advances in SAR interferometry time series analysis for measuring crustal deformation , 2012 .

[30]  S. Rödelsperger,et al.  Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements , 2011 .

[31]  N. Casagli,et al.  Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide , 2011 .

[32]  Nicola Casagli,et al.  Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: The case of Mt. Beni (Florence, Italy) , 2011 .

[33]  Davide Notti,et al.  Analysis with C- and X-band satellite SAR data of the Portalet landslide area , 2011 .

[34]  Zhen Li,et al.  Comparison of SAR and optical data in deriving glacier velocity with feature tracking , 2011 .

[35]  Tazio Strozzi,et al.  Short-term surface ice motion variations measured with a ground-based portable real aperture radar interferometer , 2011, Journal of Glaciology.

[36]  Giovanni Battista Barla,et al.  Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques , 2010 .

[37]  J. Roering,et al.  An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry , 2010 .

[38]  Urs Wegmüller,et al.  Signatures of ERS–Envisat Interferometric SAR Coherence and Phase of Short Vegetation: An Analysis in the Case of Maize Fields , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[39]  M. Becker,et al.  Digital elevation model with the ground-based SAR IBIS-L as basis for volcanic deformation monitoring , 2010 .

[40]  U. Wegmüller,et al.  Radar Interferometric Observations of Destabilized Rockglaciers , 2010 .

[41]  Guido Luzi,et al.  Ground Based SAR Interferometry: a Novel Tool for Geoscience , 2010 .

[42]  Valentin Gischig,et al.  Identification of active release planes using ground-based differential InSAR at the Randa rock slope instability, Switzerland , 2009 .

[43]  J. Roering,et al.  Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport , 2009 .

[44]  Jason W. Kean,et al.  Landslide movement in southwest Colorado triggered by atmospheric tides , 2009 .

[45]  John J. Clague,et al.  Natural hazards, extreme events, and mountain topography , 2009 .

[46]  Carlo Atzeni,et al.  Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer , 2009 .

[47]  M. Pastor,et al.  A landslide forecasting model using ground based SAR data: The Portalet case study , 2009 .

[48]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[49]  Carlo Atzeni,et al.  Using a Ground-Based SAR Interferometer and a Terrestrial Laser Scanner to Monitor a Snow-Covered Slope: Results From an Experimental Data Collection in Tyrol (Austria) , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Joaquim Fortuny-Guasch,et al.  A GB-SAR Processor for Snow Avalanche Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Urs Wegmüller,et al.  A Real-Aperture Radar for Ground-Based Differential Interferometry , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[52]  E. Eberhardt,et al.  Improving the interpretation of slope monitoring and early warning data through better understanding of complex deep-seated landslide failure mechanisms , 2008 .

[53]  Carlo Atzeni,et al.  Analysis of Ground-Based SAR Data With Diverse Temporal Baselines , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[54]  S. Buckley,et al.  Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations , 2008, Journal of the Geological Society.

[55]  Andreas Kääb,et al.  Remote sensing of permafrost‐related problems and hazards , 2008 .

[56]  Carlos López-Martínez,et al.  Atmospheric Artifact Compensation in Ground-Based DInSAR Applications , 2008, IEEE Geoscience and Remote Sensing Letters.

[57]  Carlo Atzeni,et al.  DEM by Ground-Based SAR Interferometry , 2007, IEEE Geoscience and Remote Sensing Letters.

[58]  Andrew Hooper,et al.  Phase unwrapping in three dimensions with application to InSAR time series. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[59]  Carlo Atzeni,et al.  Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry , 2007, IEEE Geoscience and Remote Sensing Letters.

[60]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[61]  C. Lopez-Martinez,et al.  Mining Induced Subsidence Monitoring in Urban Areas with a Ground-Based SAR , 2007, 2007 Urban Remote Sensing Joint Event.

[62]  Janusz Wasowski,et al.  Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry , 2006 .

[63]  A. Kääb,et al.  Surface displacements and surface age estimates for creeping slope landforms in Northern and Eastern Iceland using digital photogrammetry , 2006 .

[64]  P. Molnar,et al.  The influence of landsliding on sediment supply and channel change in a steep mountain catchment , 2006 .

[65]  Joaquim Fortuny-Guasch,et al.  Feasibility of Snow Avalanche Volume Retrieval by GB-SAR Imagery , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[66]  C. Werner,et al.  Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry , 2005 .

[67]  Carlo Atzeni,et al.  Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[68]  F. Catani,et al.  On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements , 2005 .

[69]  Mark A. Nearing,et al.  Digital close range photogrammetry for measurement of soil erosion , 2005 .

[70]  Jan-Peter Muller,et al.  Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, moderate resolution Imaging spectroradiometer (MODIS), and InSAR integration , 2005 .

[71]  Dario Tarchi,et al.  Generation of digital terrain models with a ground-based SAR system , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[72]  Albert Aguasca,et al.  A solid state L to X-band flexible ground-based SAR system for continuous monitoring applications , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[73]  S. Wofsy,et al.  An empirical analysis of the spatial variability of atmospheric CO2: Implications for inverse analyses and space‐borne sensors , 2004 .

[74]  Gabriele Guidi,et al.  Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[75]  Eugenio Sansosti,et al.  Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry , 2004 .

[76]  Fabio Rocca,et al.  SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique , 2003, IEEE Trans. Geosci. Remote. Sens..

[77]  Juha Hyyppä,et al.  Land-cover classification using multitemporal ERS-1/2 InSAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[78]  N. Casagli,et al.  Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: Application to the Ruinon landslide in the italian Alps , 2003 .

[79]  C. Werner,et al.  Interferometric point target analysis for deformation mapping , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[80]  Dario Tarchi,et al.  Temporal analysis of a landslide by means of a ground-based SAR Interferometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[81]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[82]  Urs Wegmüller,et al.  SAR geocoding and multi-sensor image registration , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[83]  Stefania Usai,et al.  A least-squares approach for long-term monitoring of deformations with differential SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[84]  David A. Noon,et al.  Slope stability radar for monitoring mine walls , 2001, Optics + Photonics.

[85]  U. Wegmuller,et al.  Land Subsidence Monitoring with Differential SAR Interferometry , 2001 .

[86]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[87]  Jan Askne,et al.  Clear-cut detection using ERS interferometry , 2001 .

[88]  Silvana G. Dellepiane,et al.  SAR images and interferometric coherence for flood monitoring , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[89]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[90]  Urs Wegmüller,et al.  Landuse mapping with ERS SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[91]  Dario Tarchi,et al.  A mobile and versatile SAR system , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[92]  F. Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[93]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[94]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[95]  R. Bamler,et al.  Synthetic aperture radar interferometry , 1998 .

[96]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[97]  P. Allen,et al.  Sediment flux from a mountain belt derived by landslide mapping , 1997 .

[98]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[99]  Urs Wegmüller,et al.  SAR interferometric signatures of forest , 1995, IEEE Trans. Geosci. Remote. Sens..

[100]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[101]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[102]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[103]  John Dunnicliff,et al.  Geotechnical Instrumentation for Monitoring Field Performance , 1988 .

[104]  F. Ulaby,et al.  Microwave Remote Sensing: Active and Passive, Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory , 1986 .

[105]  R. Caduff,et al.  Erfolgreicher Einsatz terrestrischer Radar-Interferometrie zur flächenhaften Vermesung von ausserordentlichen Hangrutschungsbewegungen im Gebiet Hintergraben (OW) , 2013 .

[106]  C. Werner,et al.  Detection and Characterization of Rock Slope Instabilities Using a Portable Radar Interferometer (GPRI) , 2013 .

[107]  N. Casagli,et al.  Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments , 2013 .

[108]  Kristensen,et al.  GB INSAR MEASUREMENT AT THE ÅKNES ROCKSLIDE , NORWAY , 2013 .

[109]  Gerhard Paar,et al.  Vision-Based Terrestrial Surface Monitoring , 2012 .

[110]  M. Jaboyedoff,et al.  Use of LIDAR in landslide investigations: a review , 2012, Natural Hazards.

[111]  Joong-Sun Won,et al.  Mapping Three-Dimensional Surface Deformation by Combining Multiple-Aperture Interferometry and Conventional Interferometry: Application to the June 2007 Eruption of Kilauea Volcano, Hawaii , 2011, IEEE Geoscience and Remote Sensing Letters.

[112]  Erik Eberhardt,et al.  Use of Ground-Based Synthetic Aperture Radar to Investigate the Complex 3-D Kinematics of a Large Open Pit Slope , 2011 .

[113]  J. Severin,et al.  Use of Ground-Based Synthetic Aperture Radar to Investigate Complex 3-D Pit Slope Kinematics , 2011 .

[114]  M. Lemmens Terrestrial Laser Scanning , 2011 .

[115]  M. Becker,et al.  Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L , 2010 .

[116]  A. Wiesmann,et al.  Integration of terrestrial LiDAR and ground-based radar interferometry for monitoring rock slopes following blast mitigation , 2010 .

[117]  Helmut Rott,et al.  The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull, Iceland , 2007, Journal of Glaciology.

[118]  Tazio Strozzi,et al.  ERS InSAR for Detecting Slope Movement in a Periglacial Mountain Environment (Western Valais Alps, Switzerland) , 2007 .

[119]  Tazio Strozzi,et al.  TYPICAL ERS INSAR SIGNATURE OF SLOPE MOVEMENTS IN A PERIGLACIAL MOUNTAIN ENVIRONMENT ( SWISS ALPS ) , 2007 .

[120]  Helmut Rott,et al.  The contribution of radar interferometry to the assessment of landslide hazards , 2006 .

[121]  D. Noon,et al.  CASE STUDIES OF SLOPE STABILITY RADAR USED IN OPEN CUT MINES Dr , 2006 .

[122]  Nicola Casagli,et al.  On the Use of Ground-Based SAR Interferometry for Slope Failure Early Warning: the Cortenova Rock Slide (Italy) , 2005 .

[123]  I. D. Longstaff,et al.  Developments in monitoring mine slope stability using radar interferometry , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[124]  Sei-ichiro Kamata,et al.  A New Algorithm for , 1999 .

[125]  Johan J. Mohr,et al.  Three-dimensional glacial flow and surface elevation measured with radar interferometry , 1998, Nature.

[126]  T. Stein International Geoscience And Remote Sensing Symposium , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[127]  Núria Devanthéry,et al.  Ieee Geoscience and Remote Sensing Letters 1 a Noninterferometric Procedure for Deformation Measurement Using Gb-sar Imagery , 2022 .