Generative adversarial networks for financial trading strategies fine-tuning and combination

Systematic trading strategies are algorithmic procedures that allocate assets aiming to optimize a certain performance criterion. To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune its strategy, or discover how to combine weak signals in novel alpha creating manners. Both aspects, namely fine-tuning and combination, have been extensively researched using several methods, but emerging techniques such as Generative Adversarial Networks can have an impact into such aspects. Therefore, our work proposes the use of Conditional Generative Adversarial Networks (cGANs) for trading strategies calibration and aggregation. To this purpose, we provide a full methodology on: (i) the training and selection of a cGAN for time series data; (ii) how each sample is used for strategies calibration; and (iii) how all generated samples can be used for ensemble modelling. To provide evidence that our approach is well grounded, we have designed an experiment with multiple trading strategies, encompassing 579 assets. We compared cGAN with an ensemble scheme and model validation methods, both suited for time series. Our results suggest that cGANs are a suitable alternative for strategies calibration and combination, providing outperformance when the traditional techniques fail to generate any alpha.

[1]  Bernhard Schölkopf,et al.  AdaGAN: Boosting Generative Models , 2017, NIPS.

[2]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[3]  Wang Leyang Properties of the total least squares estimation , 2012 .

[4]  S. Satchell,et al.  Advanced trading rules , 2002 .

[5]  Toniann Pitassi,et al.  Generalization in Adaptive Data Analysis and Holdout Reuse , 2015, NIPS.

[6]  Michael Wolf,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 17 Stewise Multiple Testing as Formalized Data Snooping Stepwise Multiple Testing as Formalized Data Snooping , 2022 .

[7]  Joost van de Weijer,et al.  Ensembles of Generative Adversarial Networks , 2016, ArXiv.

[8]  Philip Treleaven,et al.  Algorithms in future capital markets: a survey on AI, ML and associated algorithms in capital markets , 2020, ICAIF.

[9]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[10]  Kumiko Tanaka-Ishii,et al.  Modeling financial time-series with generative adversarial networks , 2019, Physica A: Statistical Mechanics and its Applications.

[11]  Martin Eling,et al.  Does the Choice of Performance Measure Influence the Evaluation of Hedge Funds? , 2007 .

[12]  Evangelos Spiliotis,et al.  The M4 Competition: Results, findings, conclusion and way forward , 2018, International Journal of Forecasting.

[13]  Magnus Wiese,et al.  Quant GANs: deep generation of financial time series , 2019, Quantitative Finance.

[14]  Xin Yao,et al.  Evolutionary Generative Adversarial Networks , 2018, IEEE Transactions on Evolutionary Computation.

[15]  Asger Lunde,et al.  Choosing the Best Volatility Models: The Model Confidence Set Approach , 2003 .

[16]  Azeem M. Shaikh,et al.  FORMALIZED DATA SNOOPING BASED ON GENERALIZED ERROR RATES , 2007, Econometric Theory.

[17]  Joseph P. Romano,et al.  Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing , 2003 .

[18]  J. B. S. Haldane,et al.  MOMENTS OF THE DISTRIBUTIONS OF POWERS AND PRODUCTS OF NORMAL VARIATES , 1942 .

[19]  Yan Liu,et al.  Lucky factors , 2021, Journal of Financial Economics.

[20]  Allan Timmermann,et al.  Dangers of data mining: the case of calendar effects in stock returns , 2001 .

[21]  W. Sharpe The Sharpe Ratio , 1994 .

[22]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[23]  David H. Bailey,et al.  The Probability of Backtest Overfitting , 2015 .

[24]  J. D. Jobson,et al.  Performance Hypothesis Testing with the Sharpe and Treynor Measures , 1981 .

[25]  A. Lo,et al.  Data-Snooping Biases in Tests of Financial Asset Pricing Models , 1989 .

[26]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[27]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[28]  A. Timmermann Chapter 4 Forecast Combinations , 2006 .

[29]  David H. Bailey,et al.  Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest Overfitting on Out-of-Sample Performance , 2014 .

[30]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[31]  Frank Hutter,et al.  CMA-ES for Hyperparameter Optimization of Deep Neural Networks , 2016, ArXiv.

[32]  Jeffrey S. Racine,et al.  Consistent cross-validatory model-selection for dependent data: hv-block cross-validation , 2000 .

[33]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[34]  Rob J. Hyndman,et al.  A note on the validity of cross-validation for evaluating autoregressive time series prediction , 2018, Comput. Stat. Data Anal..

[35]  Shui Ki Wan,et al.  Is there an optimal forecast combination , 2014 .

[36]  Wenjian Wang,et al.  Markov cross-validation for time series model evaluations , 2017, Inf. Sci..

[37]  Tom White,et al.  Generative Adversarial Networks: An Overview , 2017, IEEE Signal Processing Magazine.

[38]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[39]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[40]  A Classic Case of " Data Snooping " for Classroom Discussion , 2000 .

[41]  Katharina Eggensperger,et al.  Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters , 2013 .

[42]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[43]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[44]  I. Cockburn,et al.  The Economics of Reproducibility in Preclinical Research , 2015, PLoS biology.

[45]  MUNCHAUSEN'S STATISTICAL GRID,WHICH MAKES ALL TRIALS SIGNIFICANT , 1984, The Lancet.

[46]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[47]  John Douglas Opdyke,et al.  Comparing Sharpe ratios: So where are the p-values? , 2007 .

[48]  J. Ioannidis Why Most Published Research Findings Are False , 2005, PLoS medicine.

[49]  Kai-Bor Yu,et al.  Total least squares approach for frequency estimation using linear prediction , 1987, IEEE Trans. Acoust. Speech Signal Process..

[50]  S. Nadarajah,et al.  On the distribution of the product of correlated normal random variables , 2016 .

[51]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[52]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[53]  Fernando Bação,et al.  Effective data generation for imbalanced learning using conditional generative adversarial networks , 2018, Expert Syst. Appl..

[54]  Marcos Lopez de Prado,et al.  The Sharpe Ratio Efficient Frontier , 2012 .

[55]  Piotr Cofta,et al.  The Model of Confidence , 2007 .

[56]  A. Gelman,et al.  The garden of forking paths : Why multiple comparisons can be a problem , even when there is no “ fishing expedition ” or “ p-hacking ” and the research hypothesis was posited ahead of time ∗ , 2019 .

[57]  Philip Treleaven,et al.  QuantNet: Transferring Learning Across Systematic Trading Strategies , 2020, ArXiv.

[58]  Lingjiang Kong,et al.  Exact Distribution for the Product of Two Correlated Gaussian Random Variables , 2016, IEEE Signal Processing Letters.

[59]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[60]  Joseph P. Romano,et al.  Efficient Computation of Adjusted P-Values for Resampling-Based Stepdown Multiple Testing , 2016 .

[61]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[62]  Yogendra P. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[63]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[64]  Xian-Da Zhang,et al.  Matrix Analysis and Applications , 2017 .

[65]  Alfredo De Santis,et al.  Using generative adversarial networks for improving classification effectiveness in credit card fraud detection , 2017, Inf. Sci..

[66]  Yann LeCun,et al.  Energy-based Generative Adversarial Network , 2016, ICLR.

[67]  R. Lanfear,et al.  The Extent and Consequences of P-Hacking in Science , 2015, PLoS biology.

[68]  A. Timmermann Forecast Combinations , 2005 .

[69]  M. Simon Probability distributions involving Gaussian random variables : a handbook for engineers and scientists , 2002 .

[70]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[71]  Campbell R. Harvey,et al.  Backtesting , 2015, The Journal of Portfolio Management.

[72]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[73]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[74]  Gautier Marti,et al.  CORRGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial Networks , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[75]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[76]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[77]  Rémi Munos,et al.  Autoregressive Quantile Networks for Generative Modeling , 2018, ICML.

[78]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[79]  Olivier Ledoit,et al.  Robust Performance Hypothesis Testing with the Sharpe Ratio , 2007 .

[80]  Gunnar Rätsch,et al.  Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs , 2017, ArXiv.

[81]  Magnus Wiese,et al.  Deep Hedging: Learning to Simulate Equity Option Markets , 2019, ArXiv.

[82]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[83]  Quantifying Backtest Overfitting in Alternative Beta Strategies , 2017, The Journal of Portfolio Management.

[84]  A. Lo The Statistics of Sharpe Ratios , 2002 .

[85]  E. Acar Chapter 4 – Expected returns of directional forecasters , 2002 .

[86]  John E. Hopcroft,et al.  Stacked Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  H. Akaike A new look at the statistical model identification , 1974 .

[88]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[89]  H. White,et al.  A Reality Check for Data Snooping , 2000 .