Comparative study of the TiO2 nanopowders prepared from different precursors and chemical methods for heterogeneous photocatalysis application

[1]  Z. Fang,et al.  A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis , 2021 .

[2]  Z. Nagy,et al.  Photocatalytic Crystalline and Amorphous TiO2 Nanotubes Prepared by Electrospinning and Atomic Layer Deposition , 2021, Molecules.

[3]  P. L. S. Bergo,et al.  Degradation of hormones in tap water by heterogeneous solar TiO2-photocatalysis: Optimization, degradation products identification, and estrogenic activity removal , 2021, Journal of Environmental Chemical Engineering.

[4]  T. Dikici,et al.  Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies , 2021, Journal of Sol-Gel Science and Technology.

[5]  M. Catauro,et al.  Thermal, chemical and antimicrobial characterization of bioactive titania synthesized by sol–gel method , 2020, Journal of Thermal Analysis and Calorimetry.

[6]  R. Cerc Korošec,et al.  Thermal techniques as a tool for the direction of the preparation of photocatalytically efficient titania thin films and powders , 2020, Journal of Thermal Analysis and Calorimetry.

[7]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics , 2020 .

[8]  D. Cortés-Hernández,et al.  Microwave assisted sol–gel synthesis of titanium dioxide using hydrochloric and acetic acid as catalysts , 2019, Boletín de la Sociedad Española de Cerámica y Vidrio.

[9]  R. Hussain,et al.  Study of the effect of microwave holding time on the physicochemical properties of titanium oxide , 2019, Materials Research Express.

[10]  A. Garshev,et al.  Titanium Oxide Microspheres with Tunable Size and Phase Composition , 2019, Materials.

[11]  R. J. Kriek,et al.  The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2) , 2018 .

[12]  M. López-Muñoz,et al.  Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin films , 2018, Journal of Nanoparticle Research.

[13]  B. Malič,et al.  Thermal behaviour of the TiO2-based gels obtained by microwave-assisted sol–gel method , 2017, Journal of Thermal Analysis and Calorimetry.

[14]  Carlos Frederico de Oliveira Graeff,et al.  Easy and Fast Preparation of TiO2 - based Nanostructures Using Microwave Assisted Hydrothermal Synthesis , 2017 .

[15]  Huey-Jiuan Lin,et al.  Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process , 2016 .

[16]  S. G. Kumar,et al.  Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. , 2014, Nanoscale.

[17]  A. Vinogradov,et al.  Low-temperature sol–gel synthesis of crystalline materials , 2014 .

[18]  W. Pan,et al.  Synthesis of TiO2 based on hydrothermal methods using elevated pressures and microwave conditions , 2014, Journal of Thermal Analysis and Calorimetry.

[19]  S. Chiarakorn,et al.  Visible light responsive Ag/TiO2/MCM-41 nanocomposite films synthesized by a microwave assisted sol–gel technique , 2014 .

[20]  S. K. Mishra,et al.  Study of structural transformation in TiO2 nanoparticles and its optical properties , 2013 .

[21]  N. Koga Ozawa’s kinetic method for analyzing thermoanalytical curves , 2013, Journal of Thermal Analysis and Calorimetry.

[22]  Wen-Churng Lin,et al.  Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide , 2012 .

[23]  Luigi Carbone,et al.  Microwave-assisted synthesis of colloidal inorganic nanocrystals. , 2011, Angewandte Chemie.

[24]  Xiaohua Lu,et al.  Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. , 2010, Journal of hazardous materials.

[25]  B. Hameed,et al.  The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .

[26]  Zheshen Li,et al.  Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film , 2009 .

[27]  Debabrata Basu,et al.  Prospects of microwave processing: An overview , 2008 .

[28]  Yanshuo Li,et al.  Microwave synthesis of zeolite membranes : A review , 2008 .

[29]  M. S. Hegde,et al.  Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications , 2008 .

[30]  M. Crisan,et al.  Sol–gel S-doped TiO2 materials for environmental protection , 2008 .

[31]  Jiaguo Yu,et al.  Synthesis, characterization and photocatalytic activity of mesoporous titania nanorod/titanate nanotube composites. , 2007, Journal of hazardous materials.

[32]  J. Madarász,et al.  TiO2-based nanopowders obtained from different Ti-alkoxides , 2007 .

[33]  Landong Li,et al.  Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. , 2006, Chemistry, an Asian journal.

[34]  A. Fujishima,et al.  Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization , 2001 .

[35]  G. Branković,et al.  Evaluation of Kinetic Data for Crystallization of Tio2 Prepared by Hydrolysis Method , 2000 .

[36]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[37]  Mario Aachen Chemistry Of Nanocrystalline Oxide Materials Combustion Synthesis Properties And Applications , 2016 .

[38]  S. Kurajica,et al.  Nanocrystalline anatase derived from modified alkoxide mesostructured gel , 2015, Journal of Thermal Analysis and Calorimetry.

[39]  T. Athar Smart precursors for smart nanoparticles , 2015 .

[40]  Jaclyn E. Cañas-Carrell,et al.  Metal oxide nanomaterials: health and environmental effects , 2014 .

[41]  Yen-Ling Chen,et al.  Thermal Behavior and Phase Transformation of TiO2 Nanocrystallites Prepared by a Coprecipitation Route , 2013, Metallurgical and Materials Transactions A.

[42]  Masahiro Yoshimura,et al.  Handbook of hydrothermal technology , 2013 .

[43]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[44]  M. Crisan,et al.  TiO2-Based Porous Materials Obtained from Gels, in Different Experimental Conditions , 1997 .