Complexity results for triangular sets

We study the representation of the solutions of a polynomial system by triangular sets, and concentrate on the positive-dimensional case. We reduce to dimension zero by placing the free variables in the base field, so the solutions can be represented by triangular sets with coefficients in a rational function field.We give intrinsic-type bounds on the degree of the coefficients in such a triangular set, and on the degree of an associated degeneracy hypersurface. Then we show how to apply lifting techniques in this context, and point out the role played by the evaluation properties of the input system.Our algorithms are implemented in Magma; we present three applications, relevant to geometry and number theory.

[1]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[2]  Éric Schost,et al.  Degree bounds and lifting techniques for triangular sets , 2002, ISSAC '02.

[3]  I. Bershenko-kogan Inductive approach to Cartan''s Moving Frame Method with applications to classical invariant theory , 2000 .

[4]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[5]  Wolfgang Trinks,et al.  On improving approximate results of Buchberger's algorithm by Newton's method , 1984, SIGS.

[6]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[7]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[8]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[9]  David A. Cox,et al.  IMPLICITIZATION OF SURFACES IN ℙ3 IN THE PRESENCE OF BASE POINTS , 2002, math/0205251.

[10]  K. B. O’Keefe,et al.  The differential ideal $[uv]$ , 1966 .

[11]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[12]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[13]  W. Keller,et al.  Courbes algébriques de genre 2 et 3 possédant de nombreux points rationnels , 1995 .

[14]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[15]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[16]  É. Schost,et al.  Fast Multivariate Power Series Multiplication in Characteristic Zero , 2003 .

[17]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[18]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[19]  Teresa Krick,et al.  On Intrinsic Bounds in the Nullstellensatz , 1997, Applicable Algebra in Engineering, Communication and Computing.

[20]  Éric Schost,et al.  On the Invariants of the Quotients of the Jacobian of a Curve of Genus 2 , 2001, AAECC.

[21]  Éric Schost,et al.  Modular equations for hyperelliptic curves , 2004, Math. Comput..

[22]  Olivier Ruatta Dualité algébrique, structures et applications , 2002 .

[23]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[24]  Everett W. Howe,et al.  Large torsion subgroups of split Jacobians of curves of genus two or three , 1998 .

[25]  Leopoldo Kulesz Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels , 1995 .

[26]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[27]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996 .

[28]  Jean-François Mestre,et al.  Construction de courbes de genre 2 à partir de leurs modules , 1991 .

[29]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[30]  Agnes Szanto,et al.  Computation with polynomial systems , 1999 .

[31]  Sally Morrison The Differential Ideal [ P ] : M ∞ , 1999 .

[32]  Sally Morrison The Differential Ideal [P]: Minfty , 1999, J. Symb. Comput..

[33]  Joos Heintz,et al.  Deformation Techniques for Efficient Polynomial Equation Solving , 2000, J. Complex..

[34]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.

[35]  Leopoldo Kulesz,et al.  Application de la méthode de Dem'janenko–Manin à certaines familles de courbes de genre 2 et 3 , 1999 .

[36]  Juan Sabia,et al.  Bounds for traces in complete intersections and degrees in the Nullstellensatz , 1995, Applicable Algebra in Engineering, Communication and Computing.

[37]  Carlos D'Andrea Resultants and Moving Surfaces , 2001, J. Symb. Comput..

[38]  Lars Langemyr Algorithms for a Multiple Algebraic Extension II , 1991 .

[39]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[40]  Lars Langemyr Algorithms for a Multiple Algebraic Extension II , 1991, AAECC.

[41]  Stéphane Dellière Triangularisation de systèmes constructibles : application à l'évaluation dynamique , 1999 .

[42]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[43]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[44]  Irina A. Kogan,et al.  Inductive Approach to Cartan's Moving Frame Method with Applications to Classical Invariant Theory. , 2019, 1909.02055.

[45]  Laurent Busé,et al.  ON THE CLOSED IMAGE OF A RATIONAL MAP AND THE IMPLICITIZATION PROBLEM , 2002, math/0210096.

[46]  Franz Winkler,et al.  A p-Adic Approach to the Computation of Gröbner Bases , 1988, J. Symb. Comput..

[47]  Alexei Yu. Uteshev,et al.  On the Bézout Construction of the Resultant , 1999, J. Symb. Comput..

[48]  Bernard Mourrain,et al.  Relations Between Roots and Coefficients, Interpolation and Application to System Solving , 2002, J. Symb. Comput..

[49]  Grégoire Lecerf Quadratic Newton Iteration for Systems with Multiplicity , 2002, Found. Comput. Math..

[50]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[51]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[52]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[53]  Luis M. Pardo,et al.  How Lower and Upper Complexity Bounds Meet in Elimination Theory , 1995, AAECC.

[54]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[55]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[56]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[57]  Pierrick Gaudry,et al.  Algorithmique des courbes hyperelliptiques et applications à la cryptologie , 2000 .

[58]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[59]  Giovanni Gallo,et al.  Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .