Extended higher cup-Product Chern-Simons theories

Abstract The proper action functional of ( 4 k + 3 ) -dimensional U ( 1 ) -Chern–Simons theory including the instanton sectors has a well known description: it is given on the moduli space of fields by the fiber integration of the cup product square of classes in degree- ( 2 k + 2 ) differential cohomology. We first refine this statement from the moduli space to the full higher smooth moduli stack of fields, to which the higher-order-ghost BRST complex is the infinitesimal approximation. Then we generalize the refined formulation to cup product Chern–Simons theories of nonabelian and higher nonabelian gauge fields, such as the nonabelian String c -2-connections appearing in quantum-corrected 11-dimensional supergravity and M-branes. We discuss aspects of the off-shell extended geometric prequantization (in the sense of extended or multi-tiered QFT) of these theories, where there is a prequantum U ( 1 ) - k -bundle (equivalently: a U ( 1 ) - ( k − 1 ) -bundle gerbe) in each codimension k . Examples we find include moduli stacks for differential T-duality structures as well as the anomaly line bundles of higher electric/magnetic charges, such as the 5-brane charges appearing in heterotic supergravity, appearing as line bundles with connection on the smooth higher moduli stacks of field configurations.

[1]  J. Zanelli Uses of Chern-Simons actions , 2008, 0805.1778.

[2]  Chern-Simons gauge theory as a string theory , 1992, hep-th/9207094.

[3]  L.Baulieu,et al.  Chern-Simons and Twisted Supersymmetry in Higher Dimensions , 1997, hep-th/9707174.

[4]  A. Valentino,et al.  T-DUALITY AND DIFFERENTIAL K-THEORY , 2009, 0912.2516.

[5]  CLASSICAL CHERN-SIMONS THEORY, PART 2 , 1992, hep-th/9206021.

[6]  A Derivation of K theory from M theory , 2000, hep-th/0005090.

[7]  J. Zanelli Lecture notes on Chern-Simons (super-)gravities , 2005 .

[8]  Edward Witten,et al.  (2+1)-Dimensional Gravity as an Exactly Soluble System , 1988 .

[9]  G. Leibbrandt CHERN-SIMONS THEORY , 1994 .

[10]  Self-duality, Ramond-Ramond fields, and K-theory , 1999, hep-th/9912279.

[11]  AdS / CFT correspondence and topological field theory , 1998, hep-th/9812012.

[12]  H. Sati Corners in M-theory , 2011, 1101.2793.

[13]  U. Schreiber,et al.  Categorified symmetries , 2010, 1004.2472.

[14]  Yuji Terashima,et al.  Higher-dimensional parallel transports , 2001 .

[15]  Christopher L. Rogers,et al.  A higher Chern-Weil derivation of AKSZ sigma-models , 2011, 1108.4378.

[16]  HIGHER DIMENSIONAL ABELIAN CHERN-SIMONS THEORY , 1989 .

[17]  D. Freed Classical Chern-Simons Theory, 1 , 1995 .

[18]  H. Nastase Towards a Chern-Simons M theory of OSp(1|32) ×OSp(1|32) , 2008 .

[19]  L. Baulieu,et al.  Chern-Simons and twisted supersymmetry in various dimensions , 1998 .

[20]  Urs Schreiber,et al.  Differential cohomology in a cohesive infinity-topos , 2013, 1310.7930.

[21]  I. Frenkel,et al.  Complex counterpart of Chern-Simons-Witten theory and holomorphic linking , 2005, math/0502169.

[22]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[23]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[24]  Yuji Terashima,et al.  A fiber integration formula for the smooth Deligne cohomology , 2000 .

[25]  Daniel S. Freed Dirac Charge Quantization and Generalized Differential Cohomology , 2000 .

[26]  D. Baraglia,et al.  Leibniz algebroids, twistings and exceptional generalized geometry , 2011, 1101.0856.

[27]  H. Sati Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures , 2011, 1109.4461.

[28]  New gauge supergravity in seven and eleven dimensions , 1997, hep-th/9710180.

[29]  R. Rubio Generalized geometry of type Bn , 2014 .

[30]  G. Moore,et al.  Type II Actions from 11-Dimensional Chern-Simons Theories , 2006, hep-th/0611020.

[31]  H. Sati TWISTED TOPOLOGICAL STRUCTURES RELATED TO M-BRANES , 2010, 1008.1755.

[32]  F. Izaurieta,et al.  On eleven-dimensional Supergravity and Chern-Simons theory , 2011, 1103.2182.

[33]  Christopher L. Rogers,et al.  Higher geometric prequantum theory , 2013 .

[34]  -. Max-Planck,et al.  M. Theory , 1998 .

[35]  Jacob Lurie,et al.  On the Classification of Topological Field Theories , 2009, 0905.0465.

[36]  D. Fiorenza,et al.  The E8 Moduli 3-Stack of the C-Field in M-Theory , 2012, 1202.2455.

[37]  H. Sati $E_8$ Gauge Theory and Gerbes in String T , 2010 .

[38]  G. Moore,et al.  Classification of abelian spin Chern-Simons theories , 2005, hep-th/0505235.

[39]  Duality and Cohomology in M-Theory with Boundary , 2010, 1012.4495.

[40]  J. Schiff,et al.  A Kahler-{Chern-Simons} Theory and Quantization of Instanton Moduli Spaces , 1990 .

[41]  On flux quantization in M-theory and the effective action , 1996, hep-th/9609122.

[42]  Haitao Liu Dimension of Conformal Blocks in Five Dimensional Kaehler-Chern-Simons Theory , 2009, 0903.1141.

[43]  M theory as a holographic field theory , 1997, hep-th/9712130.

[44]  Four-Dimensional Avatars of Two-Dimensional RCFT , 1995, hep-th/9509151.

[45]  E. Witten Five-brane effective action in M theory , 1996, hep-th/9610234.

[46]  S. Chern,et al.  Characteristic forms and geometric invariants , 1974 .

[47]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[48]  J. Brylinski,et al.  Čech cocycles for characteristic classes , 1996 .

[49]  Urs Schreiber,et al.  Twisted Differential String and Fivebrane Structures , 2009, 0910.4001.

[50]  D. Fiorenza,et al.  A Higher Stacky Perspective on Chern–Simons Theory , 2013, 1301.2580.

[51]  H. Sati GEOMETRIC AND TOPOLOGICAL STRUCTURES RELATED TO M-BRANES II: TWISTED STRING AND STRINGC STRUCTURES , 2010, Journal of the Australian Mathematical Society.

[52]  Urs Schreiber,et al.  Cech cocycles for differential characteristic classes -- An infinity-Lie theoretic construction , 2010, 1011.4735.

[53]  Urs Schreiber,et al.  Principal ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-bundles: general theory , 2012, Journal of Homotopy and Related Structures.

[54]  Bundle Gerbes for Chern-Simons and Wess-Zumino-Witten Theories , 2004, math/0410013.

[55]  D. Stevenson,et al.  Principal ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-bundles: presentations , 2012, Journal of Homotopy and Related Structures.

[56]  H. Sati M-theory, the signature theorem, and geometric invariants , 2010, 1012.1300.

[57]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[58]  H. Sati,et al.  Fivebrane Structures , 2008, 0805.0564.

[59]  Lecture notes on Chern-Simons (super-)gravities. Second edition (February 2008) , 2005, hep-th/0502193.

[60]  K. Waldorf String connections and Chern-Simons theory , 2009, 0906.0117.

[61]  I. M. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[62]  The Dynamical structure of higher dimensional Chern-Simons theory , 1996, hep-th/9605159.

[63]  Kiyonori Gomi The Formulation of the Chern-Simons Action for General Compact Lie Groups Using Deligne Cohomology , 2001, hep-th/0104183.

[64]  H. Sati M-theory with framed corners and tertiary index invariants , 2012, 1203.4179.

[65]  H. Sati,et al.  L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.

[66]  R. Jackiw,et al.  Topologically Massive Gauge Theories , 1982 .