Геометрические свойства собственных функций@@@Geometric properties of eigenfunctions
暂无分享,去创建一个
Дмитрий Якобсон | Dmitry Jakobson | Николай Семенович Надирашвили | Nikolai Nadirashvili | Дж Тот | John A. Toth | Дмитрий Якобсон | Dmitry Jakobson | N. Nadirashvili | Дж Тот
[1] Jochen Brüning,et al. Über Knoten von Eigenfunktionen des Laplace-Beltrami-Operators , 1978 .
[2] T. Paul,et al. Weighted trace formula near a hyperbolic trajectory and complex orbits , 1998 .
[3] Kaufman,et al. Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.
[4] Dennis A. Hejhal,et al. On the Topography of Maass Waveforms for PSL(2, Z) , 1992, Exp. Math..
[5] T. Hoffmann-Ostenhof,et al. The nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^2$ can be closed , 1997 .
[6] A. Good. Cusp forms and eigenfunctions of the Laplacian , 1984 .
[7] E. Bogomolny. Smoothed wave functions of chaotic quantum systems , 1988 .
[8] P. Bérard,et al. Volume des ensembles nodaux des fonctions propres du laplacien , 1985 .
[9] Y. Sinai,et al. Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae , 1995 .
[10] Riemannian manifolds with uniformly bounded eigenfunctions , 2000, math-ph/0002038.
[11] P. Bérard. On the wave equation on a compact Riemannian manifold without conjugate points , 1977 .
[12] T. Prosen,et al. Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates , 1996, chao-dyn/9611016.
[13] Analytic continuation of representations and estimates of automorphic forms , 1999, math/9907202.
[14] Taylor,et al. Born-Oppenheimer adiabatic mechanism for regularity of states in the quantum stadium billiard. , 1985, Physical review. A, General physics.
[15] F. Steiner,et al. Temporal Quantum Chaos , 1999 .
[16] O. Bohigas,et al. Quantum chaotic dynamics and random polynomials , 1996 .
[17] B. Helffer,et al. Ergodicité et limite semi-classique , 1987 .
[18] Dieter Ullmann. Chladni und die Entwicklung der Akustik von 1750-1860 , 1996 .
[19] S. Wolpert. The Modulus of Continuity¶for Γ0(m)\? Semi-Classical Limits , 2001 .
[20] Y. C. Verdière. Quasi-modes sur les varietes Riemanniennes , 1977 .
[21] Daniel Grieser,et al. Asymptotics of the first nodal line of a convex domain , 1996 .
[22] P. Sarnak. Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity , 2001 .
[23] J. Vanderkam. Correction to: “L∞ norms and quantum ergodicity on the sphere” , 1998 .
[24] T. Hoffmann-Ostenhof,et al. Interior hölder estimates for solutions of schrödinger equations and the regularity of nodal sets , 1994 .
[25] J. Hannay. The chaotic analytic function , 1998 .
[26] Hans Lewy. On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .
[27] H. Donnelly. On the wave equation asymptotics of a compact negatively curved surface , 1978 .
[28] A. Voros,et al. Chaotic Eigenfunctions in Phase Space , 1997, chao-dyn/9711016.
[29] S. Zelditch. Quantum ergodicity on the sphere , 1992 .
[30] K. Burdzy,et al. On the “Hot Spots” Conjecture of J. Rauch , 1999 .
[31] C. Fefferman,et al. Nodal Sets of Eigenfunctions: Riemannian Manifolds With Boundary , 1990 .
[32] J. Vanderkam. L∞ norms and quantum ergodicity on the sphere , 1997 .
[33] T. Prosen. Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials , 1996, chao-dyn/9612006.
[34] Distribution of Zeros of Random and Quantum Chaotic Sections of Positive Line Bundles , 1998, math/9803052.
[35] Arke Pleijel,et al. Remarks on courant's nodal line theorem , 1956 .
[36] On the pointwise behavior of semi-classical measures , 1996 .
[37] R. Aurich,et al. On the rate of quantum ergodicity on hyperbolic surfaces and for billiards , 1997, chao-dyn/9707016.
[38] V. M. Babich,et al. Eigenfunctions Concentrated Near a Closed Geodesic , 1968 .
[39] H. Maass. Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichlet scher Reihen durch Funktionalgleichungen , 1949 .
[40] F. Toscano,et al. Geometrical approach to the distribution of the zeros for the Husimi function , 1999, chao-dyn/9903028.
[41] C. Fefferman,et al. Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .
[42] J. Toth. Various Quantum Mechanical Aspects of Quadratic Forms , 1995 .
[43] A. M. Almeida. The Weyl representation in classical and quantum mechanics , 1998 .
[44] S. V. Ngoc,et al. Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type , 2000 .
[45] Christopher D. Sogge,et al. Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds , 1988 .
[46] J. Toth. On the quantum expected values of integrable metric forms , 1999 .
[47] Fishman,et al. Semiclassical criterion for scars in wave functions of chaotic systems. , 1994, Physical review letters.
[48] M. Berry. Evolution of semiclassical quantum states in phase space , 1979 .
[49] A. Voros,et al. Chaos-revealing multiplicative representation of quantum eigenstates , 1990 .
[50] M. Srednicki,et al. Random matrix elements and eigenfunctions in chaotic systems , 1997, chao-dyn/9711020.
[51] P. Sarnak,et al. $L^\infty$ norms of eigenfunctions of arithmetic surfaces , 1995 .
[52] Peter Sarnak,et al. Integrals of products of eigenfunctions , 1994 .
[53] L. Bers. Local behavior of solutions of general linear elliptic equations , 1955 .
[54] R. Aurich,et al. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .
[55] Uzy Smilansky,et al. Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.
[56] David Jerison,et al. The diameter of the first nodal line of a convex domains , 1995 .
[57] David Jerison,et al. The “hot spots” conjecture for domains with two axes of symmetry , 2000 .
[58] R. Salem,et al. Some properties of trigonometric series whose terms have random signs , 1954 .
[59] J. Toth. Eigenfunction decay estimates in the quantum integrable case , 1998 .
[60] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .
[61] V. Guillemin. Lectures on spectral theory of elliptic operators , 1977 .
[62] N. Nadirashvili,et al. Quasi-symmetry of $L^p$ norms of eigenfunctions , 2002 .
[63] Quantum Ergodicity of Eisenstein Series for Arithmetic 3-Manifolds , 2000 .
[64] M. Berry,et al. Quantum scars of classical closed orbits in phase space , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[65] Eric Leichtnam,et al. Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .
[66] J. Toth. Eigenfunction localization in the quantized rigid body , 1996 .
[67] Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.
[68] Lev Kaplan,et al. Linear and Nonlinear Theory of Eigenfunction Scars , 1998, chao-dyn/9809011.
[69] A. Good. The square mean of Dirichlet series associated with cusp forms , 1982 .
[70] S. Zelditch. On the rate of Quantum Ergodicity, II: Lower bounds , 1994 .
[71] Poincaré–Lelong Approach to Universality and Scaling of Correlations Between Zeros , 1999, math-ph/9903012.
[72] B. S'evennec. Multiplicité du spectre des surfaces : une approche topologique , 1994 .
[73] A. Shnirelman. Addendum On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motion , 1993 .
[74] Xiaojun Di,et al. Correlations between zeros of a random polynomial , 1997 .
[75] Y. C. Verdière. Spectre conjoint d'opérateurs pseudo-différentiels qui commutent , 1980 .
[76] A M Ozorio de Almeida,et al. The Wigner function for two dimensional tori: Uniform approximation and projections , 1983 .
[77] P. Shukla. On the distribution of zeros of chaotic wavefunctions , 1997, cond-mat/9705298.
[78] J. Bernstein,et al. Sobolev norms of automorphic functionals and Fourier coefficients of cusp forms , 1998 .
[79] Random Analytic Chaotic Eigenstates , 1999, chao-dyn/9901019.
[80] Peter Sarnak,et al. Spectra and eigenfunctions of laplacians , 1997 .
[81] Szego kernels and a theorem of Tian , 2000, math-ph/0002009.
[82] Nikolai Nadirashvili,et al. Metric properties of eigenfunctions of the Laplace operator on manifolds , 1991 .
[83] F. Leyvraz,et al. Distribution of eigenvalues for the modular group , 1995 .
[84] S. Zelditch. Spectral Theory and Geometry: Lectures on wave invariants , 1999 .
[85] M. Berry. Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[86] Shiu-yuen Cheng. Eigenfunctions and nodal sets , 1976 .
[87] R. Hardt,et al. Nodal sets for solutions of elliptic equations , 1989 .
[88] Antonios D. Melas. On the nodal line of the second eigenfunction of the Laplacian in $\mathbf{R}^2$ , 1992 .
[89] P. Sarnak,et al. Quantum unique ergodicity for SL $ _2({\cal O})\!\setminus\! {\bf H}^3 $ and estimates for L-functions , 2001 .
[90] A. Bäcker,et al. On the number of bouncing ball modes in billiards , 1997 .
[91] S. Zelditch,et al. Ergodicity of eigenfunctions for ergodic billiards , 1996 .
[92] L. Hörmander,et al. The spectral function of an elliptic operator , 1968 .
[93] A. Good. Beitraege zur theorie der Dirichletreihen, die spitzenformen zugeordnet sind , 1981 .
[94] D. Armitage. Spherical Extrema of Harmonic Polynomials , 1979 .
[95] Integrable geodesic flows on n-step nilmanifolds , 2000 .
[96] Y. C. Verdière,et al. Ergodicité et fonctions propres du laplacien , 1985 .
[97] P. Leboeuf,et al. Universal fluctuations of zeros of chaotic wavefunctions , 1996 .
[98] B. Chirikov,et al. Quantum chaos: Quantum nodal points as fingerprints of classical chaos , 1995 .
[99] D. Jakobson. QUANTUM LIMITS ON FLAT TORI , 1997 .
[100] Quantum ergodicity of Eigenfunctions on PSL2(Z)/H2 , 1995 .
[101] M. Berry. Fringes decorating anticaustics in ergodic wavefunctions , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[102] Y. C. Verdière,et al. Sur la multiplicité de la première valeur propre non nulle du Laplacien , 1986 .
[103] N. Nadirashvili,et al. Bounds on the Multiplicity of Eigenvalues for Fixed Membranes , 1998 .
[104] P. Kröger. On the Ranges of Eigenfunctions on Compact Manifolds , 1998 .
[105] M. Berry,et al. The quantum phase 2-form near degeneracies: two numerical studies , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[106] A. Bäcker,et al. RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS , 1997, chao-dyn/9709030.
[107] Peter Sarnak,et al. Perspectives on the Analytic Theory of L-Functions , 2000 .
[108] M. Berry,et al. Intensity moments of semiclassical wavefunctions , 1983 .
[109] M. Srednicki,et al. Gaussian Fluctuations in Chaotic Eigenstates , 1996, chao-dyn/9603012.
[110] R. Aurich,et al. Exact theory for the quantum eigenstates of a strongly chaotic system , 1991 .
[111] Voros. Wentzel-Kramers-Brillouin method in the Bargmann representation. , 1989, Physical review. A, General physics.
[112] Michael V Berry,et al. Regular and irregular semiclassical wavefunctions , 1977 .
[113] Hidekazu Ito. Convergence of Birkhoff normal forms for integrable systems , 1989 .
[114] R. Hardt,et al. Critical sets of solutions to elliptic equations , 1999 .
[115] Fishman,et al. Approach to ergodicity in quantum wave functions. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[116] S. Zelditch. Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series , 1991 .
[117] V. Guillemin. Some Classical Theorems in Spectral Theory Revisited , 1979 .
[118] J. Bourgain. Eigenfunction bounds for the Laplacian on the n -torus , 1993 .
[119] Wendelin Werner,et al. A counterexample to the “hot spots” conjecture , 1998 .
[120] E. Heller,et al. Measuring scars of periodic orbits. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[121] S. Zelditch,et al. Classical Limits of Eigenfunctions for Some Completely Integrable Systems , 1999 .
[122] A. V. Volovoy. Improved two–term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold , 1990 .
[123] Chaotic eigenfunctions in momentum space , 1999, chao-dyn/9905015.
[124] V. Ivrii,et al. Spectral Asymptotics with Highly Accurate Remainder Estimates , 1990 .
[125] Gregor Tanner,et al. How chaotic is the stadium billiard? A semiclassical analysis , 1996, chao-dyn/9610013.
[126] A. Zygmund. On Fourier coefficients and transforms of functions of two variables , 1974 .
[127] I Petridis,et al. Fourier coefficients of cusp forms , 1999 .
[128] Eigenvalues of the Laplacian for Bianchi Groups , 1999 .
[129] M. Berry,et al. Quantum states without time-reversal symmetry: wavefront dislocations in a non-integrable Aharonov-Bohm billiard , 1986 .
[130] F. Steiner,et al. Quantum eigenstates of a strongly chaotic system and the scar phenomenon , 1995 .
[131] S. Zelditch. On the rate of quantum ergodicity I: Upper bounds , 1994 .
[132] Quantum integrability for the Kovalevsky top , 1998 .
[133] Y. Petridis. On squares of eigenfunctions for the hyperbolic plane and a new bound on certain L-series , 1995 .
[134] S. Fishman,et al. Fredholm method for scars , 1996 .
[135] S. Yau. A Note on the Distribution of Critical Points of Eigenfunctions , 1997 .
[136] T. Hoffmann-Ostenhof,et al. Critical sets of smooth solutions to elliptic equations in dimension 3 , 1996 .
[137] E. Hecke. Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I , 1937 .
[138] Quantum ergodicity ofC* dynamical systems , 2000, math-ph/0002008.
[139] Eric J. Heller,et al. Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .
[140] R. Cooke,et al. The Cantor-Lebesgue Theorem , 1979 .
[141] Peter Sarnak,et al. The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .
[142] P. Sarnak,et al. Number variance for arithmetic hyperbolic surfaces , 1994 .
[143] A. Voros,et al. Normal modes of billiards portrayed in the stellar (or nodal) representation , 1995 .
[144] N. Nadirashvili,et al. Eigenfunctions with few critical points , 1999 .
[145] S. Fishman,et al. Quantum eigenfunctions in terms of periodic orbits of chaotic systems , 1993 .
[146] G. Besson. On the multiplicy of the eigenvalues of the Laplacian , 1988 .
[147] Richard F. Bass,et al. Fiber Brownian motion and the `hot spots''problem Duke Math , 2000 .
[148] S. Fishman,et al. Exact eigenfunctions of a chaotic system , 1997, chao-dyn/9707021.
[149] Lev Kaplan,et al. Weak quantum ergodicity , 1998, chao-dyn/9810002.