The Asymptotic Order of the k-SAT Threshold

Form a random k-SAT formula on n variables by selecting uniformly and independently m=rn clauses out of all 2^k (n choose k) possible k-clauses. The Satisfiability Threshold Conjecture asserts that for each k there exists a constant r_k such that, as n tends to infinity, the probability that the formula is satisfiable tends to 1 if r r_k. It has long been known that 2^k / k 2^{k-1} \ln 2 - d_k, where d_k \to (1+\ln 2)/2. Our proof also allows a blurry glimpse of the ``geometry'' of the set of satisfying truth assignments, and a nearly exact location of the threshold for Not-All-Equal (NAE) k-SAT.

[1]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[2]  Dimitris Achlioptas,et al.  Setting 2 variables at a time yields a new lower bound for random 3-SAT (extended abstract) , 1999, STOC '00.

[3]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[4]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[5]  Cristopher Moore,et al.  The phase transition in 1-in-k SAT and NAE 3-SAT , 2001, SODA '01.

[6]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[7]  Dimitris Achlioptas,et al.  Optimal myopic algorithms for random 3-SAT , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[9]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..

[10]  Ming-Te Chao,et al.  Probabilistic Analysis of Two Heuristics for the 3-Satisfiability Problem , 1986, SIAM J. Comput..

[11]  R. Monasson,et al.  Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.

[12]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[13]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[14]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[15]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[16]  Andreas Goerdt A Threshold for Unsatisfiability , 1996, J. Comput. Syst. Sci..

[17]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[18]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..