Target Recognition in Infrared Circumferential Scanning System via Deep Convolutional Neural Networks

With an infrared circumferential scanning system (IRCSS), we can realize long-time surveillance over a large field of view. Recognizing targets in the field of view automatically is a crucial component of improving environmental awareness under the trend of informatization, especially in the defense system. Target recognition consists of two subtasks: detection and identification, corresponding to the position and category of the target, respectively. In this study, we propose a deep convolutional neural network (DCNN)-based method to realize the end-to-end target recognition in the IRCSS. Existing DCNN-based methods require a large annotated dataset for training, while public infrared datasets are mostly used for target tracking. Therefore, we build an infrared target recognition dataset to both overcome the shortage of data and enhance the adaptability of the algorithm in various scenes. We then use data augmentation and exploit the optimal cross-domain transfer learning strategy for network training. In this process, we design the smoother L1 as the loss function in bounding box regression for better localization performance. In the experiments, the proposed method achieved 82.7 mAP, accomplishing the end-to-end infrared target recognition with high effectiveness on accuracy.

[1]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[2]  Qifeng Yu,et al.  Dense structural learning for infrared object tracking at 200+ Frames per Second , 2017, Pattern Recognit. Lett..

[3]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Piet B. W. Schwering,et al.  Passive ranging using an infrared search and track sensor , 2006 .

[5]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Zhi Tang,et al.  CBNet: A Novel Composite Backbone Network Architecture for Object Detection , 2019, AAAI.

[7]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[8]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[9]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  David A. McAllester,et al.  Cascade object detection with deformable part models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Ozan Yardimci,et al.  Comparison of SVM and CNN classification methods for infrared target recognition , 2018, Defense + Security.

[13]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Michael Vollmer,et al.  Infrared Thermal Imaging: Fundamentals, Research and Applications , 2010 .

[15]  Huanxin Zou,et al.  Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder , 2017, Sensors.

[16]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[17]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[19]  Liu Jing,et al.  A Real-time Target Detection Algorithm for Panorama Infrared Search and Track System , 2012 .

[20]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[21]  Abhijit Mahalanobis,et al.  Fundamentals of target classification using deep learning , 2019 .

[22]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[23]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[24]  Ronan Fablet,et al.  CNN-Based Target Recognition and Identification for Infrared Imaging in Defense Systems , 2019, Sensors.

[25]  Р Ю Чуйков,et al.  Обнаружение транспортных средств на изображениях загородных шоссе на основе метода Single shot multibox Detector , 2017 .

[26]  Fahad Shahbaz Khan,et al.  Synthetic Data Generation for End-to-End Thermal Infrared Tracking , 2018, IEEE Transactions on Image Processing.

[27]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[28]  Jin Tang,et al.  RGB-T Object Tracking: Benchmark and Baseline , 2018, Pattern Recognit..

[29]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[30]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[32]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[33]  Quoc V. Le,et al.  EfficientDet: Scalable and Efficient Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Nuno Vasconcelos,et al.  Cascade R-CNN: Delving Into High Quality Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[37]  Guoliang Fan,et al.  Automatic Target Recognition in Infrared Imagery Using Dense HOG Features and Relevance Grouping of Vocabulary , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[38]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Jinghua Zhang,et al.  Design and Training of Deep CNN-Based Fast Detector in Infrared SUAV Surveillance System , 2019, IEEE Access.

[41]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[42]  Larry S. Davis,et al.  An Analysis of Scale Invariance in Object Detection - SNIP , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Fan Hong-bo A High Performance IRST System Based on 1152×6 LWIR Detectors , 2010 .

[44]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[45]  Michael Felsberg,et al.  The Visual Object Tracking VOT2017 Challenge Results , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[46]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[47]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Subhransu Maji,et al.  Object detection using a max-margin Hough transform , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Jian Sun,et al.  DetNAS: Backbone Search for Object Detection , 2019, NeurIPS.

[50]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[51]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Zhenyu He,et al.  The Seventh Visual Object Tracking VOT2019 Challenge Results , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[53]  Rama Chellappa,et al.  Sparsity-motivated automatic target recognition. , 2011, Applied optics.

[54]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.