Relevance of supramolecular interactions, texture and lattice occupancy in the designer iron(II) spin crossover complexes

[1]  Giampiero Ruani,et al.  Micro- and nanopatterning of spin-transition compounds into logical structures. , 2008, Angewandte Chemie.

[2]  Azzedine Bousseksou,et al.  Towards the ultimate size limit of the memory effect in spin-crossover solids. , 2008, Angewandte Chemie.

[3]  Jean-François Létard,et al.  Nanoparticles of iron(II) spin-crossover. , 2008, Chemical communications.

[4]  Philipp Gütlich,et al.  Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. , 2008, Angewandte Chemie.

[5]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[6]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[7]  Gautam R Desiraju,et al.  Crystal engineering: a holistic view. , 2007, Angewandte Chemie.

[8]  M. Halcrow The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands , 2007 .

[9]  Christophe Vieu,et al.  A Combined Top‐Down/Bottom‐Up Approach for the Nanoscale Patterning of Spin‐Crossover Coordination Polymers , 2007 .

[10]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[11]  C. Kepert,et al.  Structural and magnetic resolution of a two-step full spin-crossover transition in a dinuclear iron(II) pyridyl-bridged compound. , 2006, Chemistry.

[12]  J. McGarvey,et al.  Vibrational spectrum of the spin crossover complex [Fe(phen)(2)(NCS)(2)] studied by IR and Raman spectroscopy, nuclear inelastic scattering and DFT calculations. , 2006, Physical chemistry chemical physics : PCCP.

[13]  Shuji Abe,et al.  Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model. , 2005, Chemical communications.

[14]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[15]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[16]  P. Gütlich,et al.  Muon spin relaxation study of the spin transition compound [Fe(Phen)(2)(NCS)(2)] , 2004 .

[17]  P. Gütlich,et al.  Spin Crossover in Transition Metal Compounds II , 2004 .

[18]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[19]  J. Eckert,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[20]  M. Reiher,et al.  Estimation of the vibrational contribution to the entropy change associated with the low- to high-spin transition in Fe(phen)2(NCS)2 complexes: Results obtained by IR and Raman spectroscopy and DFT calculations , 2002 .

[21]  Markus Reiher,et al.  Theoretical study of the Fe(phen)(2)(NCS)(2) spin-crossover complex with reparametrized density functionals. , 2002, Inorganic chemistry.

[22]  M. Reiher,et al.  Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set , 2002 .

[23]  M. Reiher,et al.  Reparameterization of hybrid functionals based on energy differences of states of different multiplicity , 2001 .

[24]  L. Duelund,et al.  Free energy of spin-crossover complexes calculated with density functional methods. , 2001, Inorganic chemistry.

[25]  Yann Garcia,et al.  Spin crossover phenomena in Fe(II) complexes , 2001 .

[26]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[27]  Y. Tor,et al.  Simple one-step synthesis of 3-bromo- and 3,8-dibromo-1,10-phenanthroline: Fundamental building blocks in the design of metal chelates , 1995 .

[28]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[29]  A. Hauser,et al.  Thermisch und optisch schaltbare Eisen(II)‐Komplexe , 1994 .

[30]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[31]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[32]  Olivier Kahn,et al.  Spin Transition Molecular Materials for displays and data recording , 1992 .

[33]  B. Gallois,et al.  Comparative investigation of the spin-crossover compounds Fe(btz)2(NCS)2 and Fe(phen)2(NCS)2 (where btz = 2,2'-bi-4,5-dihydrothiazine and phen = 1,10-phenanthroline). Magnetic properties and thermal dilatation behavior and crystal structure of Fe(btz)2(NCS)2 at 293 and 130 K , 1992 .

[34]  R. Herber,et al.  Thermally and optically driven spin-state transitions in bis(isothiocyanato)bis(5,6-dimethylphenanthroline)iron and related complexes and the crystal structure of Fe(2,9-dmp)2 (NCS)2.cntdot.1/4H2O , 1992 .

[35]  K. Boukheddaden,et al.  A simple formula for the thickness correction of symmetrical mössbauer doublets. Application to spin cross-over systems , 1992 .

[36]  Harold Basch,et al.  Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms , 1992 .

[37]  M. Konno,et al.  Temperature- or Pressure-Induced Structure Changes of a Spin Crossover Fe(II) Complex; [Fe(bpy)2(NCS)2] , 1991 .

[38]  B. Gallois,et al.  Structural changes associated with the spin transition in bis(isothiocyanato)bis(1,10-phenanthroline)iron: a single-crystal x-ray investigation , 1990 .

[39]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[40]  P. Coronel,et al.  Spin transition in a magnetic Langmuir-Blodgett film , 1988 .

[41]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[42]  R. Herber,et al.  Light-induced excited-spin-state trapping: evidence from variable temperature Fourier transform measurements , 1986 .

[43]  S. K. Kulshreshtha,et al.  Moessbauer effect and x-ray diffraction at the high-spin (5T2) .dblharw. low-spin(1A1) transition in bis(thiocyanato)bis(4,7-dimethyl-1,10-phenanthroline)iron(II)-.alpha.-picoline: thermal hysteresis, associated crystallographic phase change, time dependence of 5T2 .fwdarw. 1A1 transition, particle , 1984 .

[44]  W. J. Stevens,et al.  Electronic structure and spectra of the lowest five 1Σ+ and 3Σ+ states, and lowest three 1Π, 3Π, 1Δ, and 3Δ states of NaK , 1984 .

[45]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[46]  K. Burger,et al.  Der Einfluß von Liganden auf den magnetischen Grundzustand und den 1A15T2-Übergang bei einigen Dithiocyanato-bis-diimineisen(II)-Komplexen† , 1978 .

[47]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[48]  B. Kanellakopulos,et al.  57Fe Mossbauer effect and magnetism down to 0.98K in the high-spin (5T2) to or from low-spin (1A1) system dithiocyanato bis(4-methyl-1, 10-phenanthroline) iron (II) , 1977 .

[49]  B. Kanellakopulos,et al.  The cooperative high-spin (5T2) to or from low-spin (1A1) transition in dithiocyanatobis(4,7-dimethyl-1,10-phenanthroline)iron(II): Mossbauer effect and magnetism , 1974 .

[50]  E. König,et al.  A novel series of bis-complexes of iron(II) employing the bidentate ligand 2-methyl-1,10-phenanthroline , 1972 .

[51]  W. Baker,et al.  Magnetic Properties of Some High-Spin Complexes of Iron(II) , 1964 .

[52]  Y. Garcia,et al.  Spin crossover in 1D, 2D and 3D polymeric Fe(II) networks, In Spin crossover in transition metal Compounds I, Eds. P. Gütlich, H.A. Goodwin , 2004 .

[53]  J. Real,et al.  Communication between iron(II) building blocks in cooperative spin transition phenomena , 2003 .

[54]  Shim-Sung Lee,et al.  Iron(II) Tris(3-bromo-1,10-phenanthroline) Complex: Synthesis, Crystal Structure and Electropolymerization , 2002 .

[55]  X. You,et al.  A stacking spin-crossover iron(II) compound with a large hysteresis† , 1998 .

[56]  Philippe Coronel,et al.  Spin transition in a Langmuir–Blodgett film , 1989 .

[57]  E. König,et al.  Metal complexes of 2,9-dimethyl-1,10-phenanthroline and derivatives—I. Iron(II) complexes , 1981 .

[58]  Philipp Gütlich,et al.  Spin crossover in iron(II)-complexes , 1981 .

[59]  Philipp Gütlich,et al.  Further studies on the spin cross-over phenomenon in di-isothiocyanatobis(1,10-phenanthroline)iron(II) , 1981 .

[60]  W. Reiff,et al.  On the nature of the spin ground state of iron(II) in Fe(2,9-di-CH3-phenanthroline)2(NCS)2 , 1979 .

[61]  Takeshi Matsumoto,et al.  Modifizierte wichterle-reaktion. Eine neue methode zur hydrolyse von vinylchloriden zu ketonen , 1979 .

[62]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[63]  S. Seki,et al.  Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals , 1974 .

[64]  E. Sinn,et al.  Magnetic properties of iron(II) near the 5T2–1A1 crossover , 1972 .

[65]  K. Madeja,et al.  5T2-1A1 Equilibriums in some iron(II)-bis(1,10-phenanthroline) complexes , 1967 .