Modelling of hysteresis influence on mass transfer in building materials

The processes of mass transfer in the material influence not only the conditions within the material but also inside the connected air spaces. A new module for precise representation of mass transfer in materials in contact with the indoor air, called Humi-mur, was elaborated and validated in this work. It allows for the precise representation of sorption isotherm and vapour permeability dependence on relative humidity. Also the sorption curve hysteresis has been implemented. The new module was then applied to estimate the sensitivity of the results to uncertainty in measured material properties and the impact of hysteresis effect. Reasonable estimation of experimental uncertainty resulted in the deviation of approximately 6% in the calculated results. Hysteresis quite strongly influences the dynamic behaviour of materials. Concerning hysteresis in the sorption isotherm, we showed that the average of the adsorption and desorption equations is a reasonable approximation of mean behaviour for coarse calculation. In case when precise results of the relative humidity (absolute humidity) are needed, the hysteresis effect should be taken into account.