Oxide, interface, and border traps in thermal, N2O, and N2O‐nitrided oxides

We have combined thermally stimulated‐current (TSC) and capacitance–voltage (C–V) measurements to estimate oxide, interface, and effective border trap densities in 6–23 nm thermal, N2O, and N2O‐nitrided oxides exposed to ionizing radiation or high‐field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high‐field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation‐induced hole and interface trap generation efficiencies (0.1%–1%) in the best N2O and N2O‐nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO2) x‐ray irradiation or ∼10 mC/cm2 constant current Fowler–Nordheim injection, effective border trap densities as high as ∼5×1011 cm−2 are inferred from C–V hysteresis. These measurements suggest irradiation and high‐field s...

[1]  J. M. Aitken,et al.  Location of positive charges in SiO2 films on Si generated by vuv photons, x rays, and high‐field stressing , 1977 .

[2]  S. Senturia,et al.  IIIB-5 high-field electron capture and emission in nitrided oxides , 1984, IEEE Transactions on Electron Devices.

[3]  G. Lo,et al.  High-field breakdown in thin oxides grown in N/sub 2/O ambient , 1993 .

[4]  Robert A. Buhrman,et al.  N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen , 1995 .

[5]  Douglas A. Buchanan,et al.  Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductor capacitors , 1994 .

[6]  M. White,et al.  Observation of near-interface oxide traps with the charge-pumping technique , 1992, IEEE Electron Device Letters.

[7]  A. G. Revesz,et al.  A new MOS radiation-induced charge: negative fixed interface charge , 1992 .

[8]  Udo Schwalke,et al.  Direct observation of very slow traps after homogeneous charge injection in MOS capacitors , 1990 .

[9]  J. Murray,et al.  A general centroid determination methodology, with application to multilayer dielectric structures and thermally stimulated current measurements , 1993 .

[10]  D. Wristers,et al.  Effects of chemical composition on the electrical properties of NO‐nitrided SiO2 , 1995 .

[11]  D. Fleetwood,et al.  Trapped‐hole annealing and electron trapping in metal‐oxide‐semiconductor devices , 1992 .

[12]  A. Holmes-Siedle Predicting end-of-life performance of microelectronics in space , 1994 .

[13]  G. Lo,et al.  Radiation hardness of MOSFETs with N/sub 2/O-nitrided gate oxides , 1993 .

[14]  Patrick M. Lenahan,et al.  The effects of thermal nitridation and reoxidation on the interfacial stress and structure of silicon dioxide gate dielectrics , 1995 .

[15]  Daniel Babot,et al.  Three-level charge pumping study of radiation-induced defects at SiSiO2 interface in submicrometer MOS transistors , 1995 .

[16]  Marvin H. White,et al.  Theory and application of charge pumping for the characterization of Si-SiO/sub 2/ interface and near-interface oxide traps , 1994 .

[17]  D. Fleetwood,et al.  Radiation effects in oxynitrides grown in N/sub 2/O , 1994 .

[18]  Electron trapping during irradiation in reoxidized nitrided oxide , 1993 .

[19]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .

[20]  D.J. DiMaria Hole trapping, substrate currents, and breakdown in thin silicon dioxide films [ in FETs ] , 1995, IEEE Electron Device Letters.

[21]  D. Fleetwood,et al.  Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal‐oxide‐semiconductor devices , 1993 .

[22]  A. Chandorkar,et al.  The nature of the hole traps in reoxidized nitrided oxide gate dielectrics , 1993 .

[23]  Dennis B. Brown,et al.  Experimental evidence of two species of radiation induced trapped positive charge , 1993 .

[24]  S. Lai,et al.  Effects of avalanche injection of electrons into silicon dioxide—generation of fast and slow interface states , 1981 .

[25]  D. Dimaria,et al.  An electron paramagnetic resonance study of electron injected oxides in metal‐oxide‐semiconductor capacitors , 1988 .

[26]  D. Fleetwood 'Border traps' in MOS devices , 1992 .

[27]  R. S. Scott,et al.  Low‐level leakage currents in thin silicon oxide films , 1994 .

[28]  Observation of slow states in conductance measurements on silicon metal-oxide-semiconductor capacitors , 1989 .

[29]  Z. Shanfield,et al.  Critical Evaluation of the Midgap-Voltage-Shift Method for Determining Oxide Trapped Charge in Irradiated Mos Devices , 1987, IEEE Transactions on Nuclear Science.

[30]  D. Fleetwood,et al.  New insights into radiation-induced oxide-trap charge through thermally-stimulated-current measurement and analysis (MOS capacitors) , 1992 .

[31]  Characteristics of sub-1/4-/spl mu/m gate surface channel PMOSFET's using a multilayer gate structure of boron-doped poly-Si on thin nitrogen-doped poly-Si , 1994 .

[32]  Daniel M. Fleetwood,et al.  Thermally stimulated current measurements of SiO2 defect density and energy in irradiated metal-oxide-semiconductor capacitors , 1992 .

[33]  Warren,et al.  Defect-defect hole transfer and the identity of border traps in SiO2 films. , 1994, Physical review. B, Condensed matter.

[34]  A. Reisman,et al.  Hole trapping phenomena in the gate insulator of As‐fabricated insulated gate field effect transistors , 1990 .

[35]  J. Hwu,et al.  A systematic study of the initial electrical and radiation hardness properties of reoxidized nitrided oxides by rapid thermal processing , 1995 .

[36]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[37]  W. L. Warren,et al.  A Comparison of Positive Charge Generation in High Field Stressing and Ionizing Radiation on MOS Structures , 1987, IEEE Transactions on Nuclear Science.

[38]  D. Fleetwood,et al.  Effect of bias on thermally stimulated current (TSC) in irradiated MOS devices , 1991 .

[39]  J. Suehle,et al.  An Experimental Comparison of Measurement Techniques to Extract Si-SiO2 Interface Trap Density , 1992 .

[40]  Daniel M. Fleetwood,et al.  Comparison of MOS capacitor and transistor postirradiation response , 1989 .

[41]  Douglas A. Buchanan,et al.  Interface and bulk trap generation in metal‐oxide‐semiconductor capacitors , 1990 .

[42]  D. Dimaria,et al.  Temperature dependence of trap creation in silicon dioxide , 1990 .

[43]  J. A. Modolo,et al.  Radiation Effects in MOS Capacitors with Very Thin Oxides at 80°K , 1984, IEEE Transactions on Nuclear Science.

[44]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[45]  H. E. Boesch,et al.  An Electrical Technique to Measure the Radiation Susceptibility of MOS Gate Insulators , 1979, IEEE Transactions on Nuclear Science.

[46]  Daniel M. Fleetwood,et al.  Long‐term annealing study of midgap interface‐trap charge neutrality , 1992 .

[47]  J. Simmons,et al.  Thermally Stimulated Currents in Semiconductors and Insulators Having Arbitrary Trap Distributions , 1973 .

[48]  P. S. Winokur,et al.  Donor/acceptor nature of radiation-induced interface traps , 1988 .

[49]  D. Fleetwood,et al.  1/f noise and radiation effects in MOS devices , 1994 .

[50]  D. Babot,et al.  Etude par pompage de, charge des défauts induits à l'interface Si-SiO2 par rayonnements ionisants , 1994 .

[51]  P. S. Winokur,et al.  Correlating the Radiation Response of MOS Capacitors and Transistors , 1984, IEEE Transactions on Nuclear Science.

[52]  H. Barry Harrison,et al.  Slow current transients in metal–oxide–semiconductor capacitors , 1995 .

[53]  R. Hegde,et al.  Relationship between growth conditions, nitrogen profile, and charge to breakdown of gate oxynitrides grown from pure N2O , 1993 .

[54]  W. M. Chen,et al.  Correlation of dielectric breakdown with hole transport for ultrathin thermal oxides and N2O oxynitrides , 1995 .

[55]  C. Sodini,et al.  Radiation effects in low‐pressure reoxidized nitrided oxide gate dielectrics , 1988 .

[56]  S. Senturia,et al.  Radiation effects in nitrided oxides , 1983, IEEE Electron Device Letters.

[57]  H. E. Boesch,et al.  Reversibility of trapped hole annealing , 1988 .

[58]  Daniel M. Fleetwood,et al.  Radiation-hardened microelectronics for space applications , 1994 .

[59]  Daniel M. Fleetwood,et al.  Charge yield for cobalt-60 and 10-keV X-ray irradiations of MOS devices , 1991 .

[60]  J. Stathis,et al.  Trapping and trap creation studies on nitrided and reoxidized‐nitrided silicon dioxide films on silicon , 1991 .

[61]  K. R. Farmer,et al.  Post-metallization annealing of metal-tunnel oxide-silicon diodes , 1993 .

[62]  Daniel M. Fleetwood,et al.  Border traps: issues for MOS radiation response and long-term reliability , 1995 .

[63]  P. S. Winokur,et al.  Physical Mechanisms Contributing to Device "Rebound" , 1984, IEEE Transactions on Nuclear Science.

[64]  Charles G. Sodini,et al.  SUPPRESSION OF INTERFACE-STATE GENERATION IN REOXIDIZED NITRIDED OXIDE GATE DIELECTRICS , 1994 .

[65]  Yuan Taur,et al.  Defect generation in 3.5 nm silicon dioxide films , 1994 .

[66]  D. Kwong,et al.  Electrical properties of MOSFET's with N/sub 2/O-nitrided LPCVD SiO/sub 2/ gate dielectrics , 1992, IEEE Electron Device Letters.

[67]  Daniel M. Fleetwood,et al.  The role of border traps in MOS high-temperature postirradiation annealing response , 1993 .

[68]  B.S. Doyle,et al.  Dynamic hot-carrier stressing of reoxidized nitrided oxide , 1991, IEEE Electron Device Letters.

[69]  G. Dunn,et al.  Hole transport in SiO/sub 2/ and reoxidized nitrided SiO/sub 2/ gate insulators at low temperature (FETs) , 1991 .

[70]  Peter W. Wyatt,et al.  Reoxidized nitrided oxide for radiation-hardened MOS devices , 1989 .

[71]  F. H. Hielscher,et al.  Evidence of the Surface Origin of the 1f Noise , 1966 .

[72]  McWhorter,et al.  Determining the energy distribution of traps in insulating thin films using the thermally stimulated current technique. , 1992, Physical review letters.

[73]  Daniel M. Fleetwood,et al.  Estimating oxide‐trap, interface‐trap, and border‐trap charge densities in metal‐oxide‐semiconductor transistors , 1994 .

[74]  Paul M. Solomon,et al.  Direct measurement of the energy distribution of hot electrons in silicon dioxide , 1985 .

[75]  T. Ma,et al.  Effects of electron‐beam radiation on MOS structures as influenced by the silicon dopant , 1977 .

[76]  John H. Scofield,et al.  Reconciliation of different gate-voltage dependencies of 1/f noise in n-MOS and p-MOS transistors , 1994 .

[77]  H. E. Boesch,et al.  The Relationship between 60Co and 10-keV X-Ray Damage in MOS Devices , 1986, IEEE Transactions on Nuclear Science.

[78]  Dennis B. Brown,et al.  Time dependence of radiation‐induced interface trap formation in metal‐oxide‐semiconductor devices as a function of oxide thickness and applied field , 1991 .

[79]  H. E. Boesch,et al.  Hole Removal in Thin-Gate MOSFETs by Tunneling , 1985, IEEE Transactions on Nuclear Science.

[80]  James H. Stathis,et al.  Interface states induced by the presence of trapped holes near the silicon–silicon‐dioxide interface , 1995 .

[81]  Chenming Hu,et al.  Metal‐oxide‐semiconductor field‐effect‐transistor substrate current during Fowler–Nordheim tunneling stress and silicon dioxide reliability , 1994 .

[82]  H. E. Boesch,et al.  An overview of radiation-induced interface traps in MOS structures , 1989 .

[83]  G. J. Dunn,et al.  Generation of interface states in nitrided oxide gate dielectrics by ionizing radiation and Fowler–Nordheim stressing , 1988 .

[84]  Scofield,et al.  Evidence that similar point defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors. , 1990, Physical review letters.