Drinking Water Temperature Modelling in Domestic Systems

Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking water within the domestic water supply system. It appears that residence time influences the drinking water temperature more than the ambient temperature itself.

[1]  Yingying Wang,et al.  Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. , 2010, Water research.

[2]  M. Edwards,et al.  Effects of flow, brass location, tube materials and temperature on corrosion of brass plumbing devices , 2011 .

[3]  I. Douterelo,et al.  Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. , 2013, Water research.

[4]  Ilkka T Miettinen,et al.  Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. , 2004, Water research.

[5]  Richard Ainsworth,et al.  Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems , 2004 .

[6]  E. Blokker Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks , 2010 .

[7]  J. C. van Dijk,et al.  Simulating Nonresidential Water Demand with a Stochastic End-Use Model , 2013 .

[8]  H.E.A. van den Akker,et al.  Fysische transportverschijnselen I , 1998 .

[9]  E. Blokker,et al.  Eerste inventarisatie van gemeten concentraties lood, koper, nikkel en chroom in drinkwater , 2008 .

[10]  T. Kistemann,et al.  Drinking water quality in household supply infrastructure--A survey of the current situation in Germany. , 2010, International journal of hygiene and environmental health.

[11]  Susanne Surman,et al.  Industrial biofouling : detection, prevention and control , 2000 .

[12]  M. Warmoeskerken,et al.  Transport Phenomena Data Companion , 2009 .

[13]  Ivars Pozņakovs Application of an innovative concept for residential fire sprinkler systems in drinking water installations , 2012 .

[14]  E. J. Pieterse-Quirijns,et al.  Modeling temperature in the drinking water distribution system , 2013 .

[15]  J. Verschuuren,et al.  De doorwerking van milieubeginselen in wetgeving en praktijk : Een onderzoek in opdracht van het Rijksinstituut voor Volksgezondheid en Milieu (RIVM) , 2005 .

[16]  P. J. de Moel,et al.  Drinking Water: Principles and Practices , 2006 .

[17]  V. Rich Personal communication , 1989, Nature.

[18]  Y. Çengel Heat Transfer: A Practical Approach , 1997 .

[19]  C. Keevil,et al.  Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora , 1994, Applied and environmental microbiology.

[20]  H. Flemming,et al.  Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. , 2010, International journal of hygiene and environmental health.

[21]  Marc Edwards,et al.  The role of temperature gradients in residential copper pipe corrosion , 2004 .

[22]  S. Percival,et al.  Microbiological Aspects of Biofilms and Drinking Water , 2000 .

[23]  N. Gray Drinking Water Quality: Problems and Solutions , 1999 .

[24]  J. Bartram ... et al.,et al.  Heterotrophic plate counts and drinking-water safety , 2013 .