The synergy of gadolinium vanadate/acid functionalized carbon nanofiber for effective determination of anti-psychotic drug chlorpromazine hydrochloride in human serum sample

[1]  Aravind Radha,et al.  Neodymium(III) Vanadate-Decorated Functionalized Carbon Nanofiber Nanocomposite: An Electrochemical Tool for Tartrazine Monitoring , 2023, ACS Applied Nano Materials.

[2]  Ibrahim Khan,et al.  Shape‐Controlled First‐Row Transition Metal Vanadates for Electrochemical and Photoelectrochemical Water Splitting , 2023, Chemical record.

[3]  Sea-Fue Wang,et al.  Nanoengineered lanthanum niobate nanocaviar anchored carbon nanofibers for trace level detection of menadione in environmental samples. , 2023, Environmental research.

[4]  Sea-Fue Wang,et al.  Designing nano ranged electrode modifier comprised of samarium niobate anchored carbon nanofibers for trace level detection of food colourant: Tartrazine. , 2023, Food chemistry.

[5]  W. Hamd,et al.  New updates on vanadate compounds synthesis and visible-light-driven photocatalytic applications , 2023, Synthesis and Sintering.

[6]  Sea-Fue Wang,et al.  Highly Sensitive Amperometric Determination of Chlorpromazine Hydrochloride in Blood Serum sample employing Antimony Vanadate Nanospheres as Electrode Modifier , 2023, Microchemical Journal.

[7]  R. Chung,et al.  Lanthanum nickelate spheres embedded acid functionalized carbon nanofiber composite: An efficient electrocatalyst for electrochemical detection of food additive vanillin. , 2022, Food chemistry.

[8]  B. Tumma,et al.  Synthesis and Characterization of Zinc Vanadate Nanostructures for Supercapacitor Applications , 2022, Trends in Sciences.

[9]  Sea-Fue Wang,et al.  Hierarchically Ordered Tungsten Antimonate Nanoflowers Anchored on Carbon Nanofibers for Electrochemical Detection of a Food Additive , 2022, ACS Applied Nano Materials.

[10]  Sea-Fue Wang,et al.  Synchronously activated strontium aluminate nanoflakes anchored functionalized carbon nanofiber nanocomposite for sensitive amperometric detection of food additive: Propyl gallate. , 2022, Food chemistry.

[11]  Chong Cheng,et al.  Assembling and Regulating of Transition Metal-Based Heterophase Vanadates as Efficient Oxygen Evolution Catalysts. , 2021, Small.

[12]  K. Dutta,et al.  An overview on the use of metal vanadium oxides and vanadates in supercapacitors and rechargeable batteries , 2021, International Journal of Energy Research.

[13]  F. Zhao,et al.  A novel ratiometric electrochemical sensor based on dual-monomer molecularly imprinted polymer and Pt/Co3O4 for sensitive detection of chlorpromazine hydrochloride. , 2021, Analytica chimica acta.

[14]  P. Maksimchuk,et al.  High antioxidant activity of gadolinium–yttrium orthovanadate nanoparticles in cell-free and biological milieu , 2021, Nanotechnology.

[15]  G. Cao,et al.  Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries , 2021 .

[16]  Shen-ming Chen,et al.  Facile synthesis of alpha-phase strontium pyrophosphate incorporated with polypyrrole composite for the electrochemical detection of antipsychotic drug chlorpromazine , 2021 .

[17]  S. Wabaidur,et al.  Construction of novel binary metal oxides: Copper oxide–tin oxide nanoparticles regulated for selective and nanomolar level electrochemical detection of anti-psychotic drug , 2021 .

[18]  S. Raghavan,et al.  Effect of nitrogen annealing on the optoelectronic properties of manganese vanadate , 2021, Semiconductor Science and Technology.

[19]  Shen-ming Chen,et al.  Samarium vanadate nanospheres integrated carbon nanofiber composite as an efficient electrocatalyst for antituberculosis drug detection in real samples , 2021 .

[20]  Shen-ming Chen,et al.  Iron vanadate nanoparticles supported on boron nitride nanocomposite: Electrochemical detection of antipsychotic drug chlorpromazine , 2021 .

[21]  Wencong Lu,et al.  Design of novel egg-shaped GdVO4 photocatalyst: a unique platform for the photocatalyst and supercapacitors applications , 2020, Journal of Materials Science: Materials in Electronics.

[22]  C. Nam,et al.  Effects of annealing on nanocrystalline GdVO4 and its magnetocaloric properties , 2020, Applied Physics A.

[23]  R. Ranjithkumar,et al.  Electrochemical property analysis of zinc vanadate nanostructure for efficient supercapacitors , 2020 .

[24]  H. Daldrup-Link,et al.  GdVO4:Eu3+,Bi3+ Nanoparticles as a Contrast Agent for MRI and Luminescence Bioimaging , 2019, ACS omega.

[25]  Qiang Yang,et al.  Cost-effective and facile fluorescent probes for label-free recognition of chlorpromazine hydrochloride and logic gate operation , 2019, Journal of Photochemistry and Photobiology A: Chemistry.

[26]  L. Mai,et al.  Vanadate‐Based Materials for Li‐Ion Batteries: The Search for Anodes for Practical Applications , 2019, Advanced Energy Materials.

[27]  N. Kim,et al.  High-energy solid-state asymmetric supercapacitor based on nickel vanadium oxide/NG and iron vanadium oxide/NG electrodes , 2018, Applied Catalysis B: Environmental.

[28]  M. Scarselli,et al.  Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences , 2018, Pharmacology & therapeutics.

[29]  A. H. Sarhadi,et al.  Screen-printed Electrode Modified with Magnetic Core-shell Nanoparticles for Detection of Chlorpromazine , 2018 .

[30]  P. Nimmanpipug,et al.  Nanosized GdVO4 powders synthesized by sol–gel method using different carboxylic acids , 2018, Rare Metals.

[31]  Jingying Shi,et al.  Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. , 2018, Small.

[32]  T. Samanta,et al.  Host sensitized intense infrared emissions from Ln3+ doped GdVO4 nanocrystals: ranging from 950 nm to 2000 nm , 2018 .

[33]  N. Soltani,et al.  New carbon paste electrode modified with graphene/TiO2/V2O5 for electrochemical measurement of chlorpromazine hydrochloride , 2017 .

[34]  R. Schlögl,et al.  Electrochemical corrosion of a glassy carbon electrode , 2017 .

[35]  F. Karimi,et al.  Synthesis of CdO nanoparticles using direct chemical precipitation method: Fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples , 2017 .

[36]  M. Shamsipur,et al.  Electrocatalytic and new electrochemical properties of chloropromazine in to silicaNPs/chloropromazine/Nafion nanocomposite: Application to nitrite detection at low potential , 2017 .

[37]  Shen-ming Chen,et al.  A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine , 2016, Scientific Reports.

[38]  L. Fang,et al.  SbVO4 doped ZnO–V2O5-based varistor ceramics: microstructure, electrical properties and conductive mechanism , 2013, Journal of Materials Science: Materials in Electronics.

[39]  Di Sun,et al.  Uniform and well-dispersed GdVO4 hierarchical architectures: hydrothermal synthesis, morphology evolution, and luminescence properties , 2012 .

[40]  Yang Liu,et al.  Carbon nanofiber based electrochemical biosensors: A review , 2010 .

[41]  Joaquín A. Ortuño,et al.  Flow-Injection Coulometric Detection Based on Ion Transfer and Its Application to the Determination of Chlorpromazine , 2008, Sensors.

[42]  Scott T. Retterer,et al.  Surface characterization and functionalization of carbon nanofibers , 2008 .

[43]  Yuming Huang,et al.  Chemiluminescence of chlorpromazine hydrochloride based on cerium(IV) oxidation sensitized by rhodamine 6G. , 2002, Talanta.

[44]  W. Shen A history of antipsychotic drug development. , 1999, Comprehensive psychiatry.

[45]  I. Němec,et al.  Determination of chlorpromazine and thioridazine by differential pulse voltammetry in acetonitrile medium. , 1986, Talanta.

[46]  D. Takahashi Rapid determination of chlorpromazine hydrochloride and two oxidation products in various pharmaceutical samples using high-performance liquid chromatography and fluorescence detection. , 1980, Journal of pharmaceutical sciences.

[47]  S.F. Wang,et al.  Coral reef-like zinc niobate nanostructures decorated functionalized carbon nanofiber as electrode modifier for detection of oxidative stress biomarker: 3-nitro-L-tyrosine , 2022, Materials Today Chemistry.

[48]  M. Najafi,et al.  Electrosynthesis of Polythiophene Nanowires and Their Application for Sensing of Chlorpromazine , 2014 .

[49]  S. Dermiş,et al.  Voltammetric determination of chlorpromazine hydrochloride. , 1989, The Analyst.