Multibandwidth Kernel-Based Object Tracking

Object tracking using Mean Shift (MS) has been attracting considerable attention recently. In this paper, we try to deal with one of its shortcoming. Mean shift is designed to find local maxima for tracking objects. Therefore, in large target movement between two consecutive frames, the local and global modes are not the same as previous frames so that Mean Shift tracker may fail in tracking the desired object via localizing the global mode. To overcome this problem, a multibandwidth procedure is proposed to help conventional MS tracker reach the global mode of the density function using any staring points. This gradually smoothening procedure is called Multi Bandwidth Mean Shift (MBMS) which in fact smoothens the Kernel Function through a multiple kernel-based sampling procedure automatically. Since it is important for us to have less computational complexity for real-time applications, we try to decrease the number of iterations to reach the global mode. Based on our results, this proposed version of MS enables us to track an object with the same initial point much faster than conventional MS tracker.

[1]  Anton van den Hengel,et al.  Fast global kernel density mode seeking with application to localization and tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[2]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[3]  David Suter,et al.  False-Peaks-Avoiding Mean Shift Method for Unsupervised Peak-Valley Sliding Image Segmentation , 2003, DICTA.

[4]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Larry S. Davis,et al.  Mean-shift analysis using quasiNewton methods , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[7]  Ian D. Reid,et al.  Articulated Body Motion Capture by Stochastic Search , 2005, International Journal of Computer Vision.

[8]  Robert A. Lordo,et al.  Nonparametric and Semiparametric Models , 2005, Technometrics.

[9]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[10]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[11]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  B. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, CVPR 2004.

[13]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[15]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[16]  Santosh S. Vempala,et al.  Simulated Annealing for Convex Optimization , 2004 .

[17]  Larry S. Davis,et al.  Probabilistic tracking in joint feature-spatial spaces , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[18]  Chunhua Shen,et al.  Adaptive over-relaxed mean shift , 2005, Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005..

[19]  Gregory D. Hager,et al.  Multiple kernel tracking with SSD , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  Ming Tang,et al.  Applying neighborhood consistency for fast clustering and kernel density estimation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[22]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[23]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[24]  Leslie Pack Kaelbling,et al.  Accelerating EM: An Empirical Study , 1999, UAI.

[25]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[26]  Hwann-Tzong Chen,et al.  Real-time tracking using trust-region methods , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Ben J. A. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  Peter Hall,et al.  Bump hunting with non-Gaussian kernels , 2004 .

[30]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[31]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[33]  David Suter,et al.  MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation , 2004, International Journal of Computer Vision.

[34]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Ilan Shimshoni,et al.  Mean shift based clustering in high dimensions: a texture classification example , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Dorin Comaniciu,et al.  Nonparametric information fusion for motion estimation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[39]  Étienne Mémin,et al.  Conditional filters for image sequence-based tracking - application to point tracking , 2005, IEEE Transactions on Image Processing.

[40]  Ruslan Salakhutdinov,et al.  Adaptive Overrelaxed Bound Optimization Methods , 2003, ICML.

[41]  Ming Yang,et al.  Multiple Collaborative Kernel Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[43]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[44]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[45]  Miguel Á. Carreira-Perpiñán,et al.  On the Number of Modes of a Gaussian Mixture , 2003, Scale-Space.