Higher Voltage Ni/CdTe Schottky Diodes With Low Leakage Current

A significant improvement in electrical characteristics of Schottky diodes designed for X- and gamma-ray detectors has been achieved using semi-insulating CdTe single crystals and unified technology, where both Schottky and near-ohmic contacts were formed by the deposition of the same metal (Ni) on the opposite surfaces of the crystal pre-treated by chemical etching and Ar ion bombardment with different parameters. Reduction of injection of minority carriers from the near-ohmic contact in the neutral part of the diode and high Schottky barrier for holes provides low leakage current even at high bias voltage (<50 nA/cm2 at 2000 V and at room temperature). The current-voltage characteristics of the detectors with Ni/CdTe/Ni electrode configuration in the low-voltage range are described by the generation-recombination Sah-Noyce-Shockley theory. The results of the reproducibility and time stability of the fabricated diodes are reported.

[1]  Csaba Szeles,et al.  CdZnTe and CdTe materials for X‐ray and gamma ray radiation detector applications , 2004 .

[2]  W. Stadler,et al.  Defects in CdTe and Cd1−xZnxTe , 1996 .

[3]  Tadayui Takahashi,et al.  Recent progress in CdTe and CdZnTe detectors , 2001, astro-ph/0107398.

[4]  R. A. Btirmeister,et al.  Electrical Properties of n-Type CdSe , 1967, December 1, 1967.

[5]  Toru Aoki,et al.  Laser-induced shock wave stimulated doping of CdTe crystals , 2006 .

[6]  Tsunehiro Tanaka,et al.  Study of the surface barrier of the metal–n‐CdTe contact , 1978 .

[7]  I. Turkevych,et al.  High-temperature electron and hole mobility in CdTe , 2002 .

[8]  M. Lorenz,et al.  Electrical Properties ofn-Type CdTe , 1963 .

[9]  Toru Aoki,et al.  Defect formation in CdTe during laser‐induced doping and application to the manufacturing nuclear radiation detectors , 2006 .

[10]  Andrea Zappettini,et al.  Growth and Deep Level Characterisation of Undoped High Resistivity CdTe Crystals , 2002 .

[11]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[12]  H. Krawczynski,et al.  Evaluation of 5 mm-thick CdTe detectors from the company Acrorad , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[13]  A. Fahrenbruch,et al.  Evaluation of the CdS/CdTe heterojunction solar cell , 1977 .

[14]  L. A. Kosyachenko,et al.  Special features of charge transport in Schottky diodes based on semi-insulating CdTe , 2005 .

[15]  Paul J. Sellin,et al.  Recent advances in compound semiconductor radiation detectors , 2003 .

[16]  G. Sato,et al.  High resolution Schottky CdTe diode detector , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[17]  A. Fahrenbruch,et al.  Effects of surface preparation on the properties of metal/CdTe junctions , 1983 .

[18]  G. Sato,et al.  Improvement of the CdTe diode detectors using a guard-ring electrode , 2004, IEEE Transactions on Nuclear Science.

[19]  V. A. Gnatyuk,et al.  Charge collection properties of a CdTe Schottky diode for x- and γ-rays detectors , 2008 .

[20]  Toru Aoki,et al.  Electrical characteristics of Schottky diodes based on semi-insulating CdTe single crystals , 2007 .

[21]  M. Funaki,et al.  A 90 element CdTe array detector , 1992 .

[22]  Hirokazu Odaka,et al.  New CdTe Pixel Gamma-Ray Detector with Pixelated Al Schottky Anodes , 2007 .

[23]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.