3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors

[1]  Zhijie Chen,et al.  Nitrogenated Urchin‐like Nb2O5 Microspheres with Extraordinary Pseudocapacitive Properties for Lithium‐Ion Capacitors , 2018 .

[2]  Bing Li,et al.  Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium‐Ion Capacitors , 2018, Advanced materials.

[3]  P. Poizot,et al.  Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt , 2017 .

[4]  Tianyu Lei,et al.  In‐Plane Assembled Orthorhombic Nb2O5 Nanorod Films with High‐Rate Li+ Intercalation for High‐Performance Flexible Li‐Ion Capacitors , 2018 .

[5]  S. Ramakrishna,et al.  Electrospun hollow nanofibers for advanced secondary batteries , 2017 .

[6]  G. Rothenberg,et al.  Boosting the Supercapacitance of Nitrogen‐Doped Carbon by Tuning Surface Functionalities , 2017, ChemSusChem.

[7]  E. Morallón,et al.  Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites , 2017 .

[8]  Jaegab Lee,et al.  Niobium oxide nanoparticle core–amorphous carbon shell structure for fast reversible lithium storage , 2017 .

[9]  B. Dunn,et al.  Designing Pseudocapacitance for Nb2O5/Carbide-Derived Carbon Electrodes and Hybrid Devices. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[10]  Meilin Liu,et al.  Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. , 2017, Journal of the American Chemical Society.

[11]  Yang Zhao,et al.  Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability , 2017 .

[12]  Se Youn Cho,et al.  Long-Lasting Nb2O5-Based Nanocomposite Materials for Li-Ion Storage. , 2017, ACS applied materials & interfaces.

[13]  Hongsen Li,et al.  Nb2O5 nanoparticles encapsulated in ordered mesoporous carbon matrix as advanced anode materials for Li ion capacitors , 2016 .

[14]  Zhen Zhou,et al.  Nanomaterials and Technologies for Lithium‐Ion Hybrid Supercapacitors , 2016 .

[15]  Peiyu Wang,et al.  Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability , 2016 .

[16]  Litao Yan,et al.  Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. , 2016, Nanoscale.

[17]  Wei Zhao,et al.  Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. , 2016, Dalton transactions.

[18]  A. Luz,et al.  Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder , 2015 .

[19]  Y. R. Lee,et al.  Synthesis and characterization of graphitic mesoporous carbon using metal–metal oxide by chemical vapor deposition method , 2015 .

[20]  D. T. Pham,et al.  Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices. , 2015, ChemSusChem.

[21]  M. Shaijumon,et al.  Nb2O5/graphene nanocomposites for electrochemical energy storage , 2015 .

[22]  Jinwoo Lee,et al.  Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. , 2015, ACS nano.

[23]  Yi Cui,et al.  Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework , 2015, ACS central science.

[24]  M. Popczyk,et al.  Electrode Materials , 2015 .

[25]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[26]  Pooi See Lee,et al.  Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device , 2015 .

[27]  Jun Hirata,et al.  Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid , 2014 .

[28]  Seongseop Kim,et al.  Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. , 2014, ACS nano.

[29]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[30]  Xiaomei Wang,et al.  Structure inherited synthesis of N-doped highly ordered mesoporous Nb2O5 as robust catalysts for improved visible light photoactivity. , 2014, Nanoscale.

[31]  Joonwon Lim,et al.  Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. , 2014, Chemical communications.

[32]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[33]  Nicholas D. Petkovich,et al.  Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. , 2014, Inorganic chemistry.

[34]  Y. Qiu,et al.  Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light , 2013 .

[35]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[36]  B. Dunn,et al.  The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5 , 2012 .

[37]  Bruce Dunn,et al.  High‐Performance Supercapacitors Based on Nanocomposites of Nb2O5 Nanocrystals and Carbon Nanotubes , 2011 .

[38]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[39]  A. Ōya,et al.  Phenomena of catalytic graphitization , 1982 .