Krein space approach to H∞ mixed sensitivity minimization for a class of infinite dimensional systems

Motivated by the computation of the H/sup /spl infin// optimal performance and optimal mixed sensitivity for a class of infinite dimensional systems, the author considers the explicit computation of the norm and minimal symbols of a class of "Hankel plus Toeplitz" type operators with irrational symbols using the Krein space approach. The author shows how to explicitly compute the norm and parameterize all the minimal symbols. The results are used to obtain a complete solution to the H/sup /spl infin// optimal mixed sensitivity synthesis problem for a class of infinite dimensional systems: an explicit formula for computing the H/sup /spl infin// optimal performance and explicit parameterization of all optimal and suboptimal mixed sensitivities. An illustrative example is given. >

[1]  J. Helton,et al.  Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: Parametrization of the set of all solutions , 1986 .

[2]  Donald Sarason,et al.  Operator-Theoretic Aspects of the Nevanlinna-Pick Interpolation Problem , 1985 .

[3]  Edmond A. Jonckheere,et al.  L∞-compensation with mixed sensitivity as a broadband matching problem , 1984 .

[4]  Hong Yang,et al.  Optimal mixed sensitivity for SISO-distributed plants , 1994, IEEE Trans. Autom. Control..

[5]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[6]  Dante C. Youla,et al.  Modern Wiener--Hopf design of optimal controllers Part I: The single-input-output case , 1976 .

[7]  Hari Bercovici,et al.  On skew Toeplitz operations, I , 1987 .

[8]  H. Özbay A simpler formula for the singular values of a certain Hankel operator , 1991 .

[9]  Allen Tannenbaum,et al.  Weighted sensitivity minimization for delay systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[10]  F. Fagnani An operator-theoretic approach to the mixed-sensitivity minimization problem , 1991 .

[11]  Allen Tannenbaum,et al.  On the H ∞ -optimal sensitivity problem for systems with delays , 1987 .

[12]  Bruce A. Francis,et al.  Uniformly optimal control of linear feedback systems , 1985, Autom..

[13]  Edmond A. Jonckheere,et al.  A spectral characterization of H ∞ -optimal feedback performance and its efficient computation , 1986 .

[14]  Hong Yang $H^\infty$ Optimal Sensitivity for a Class of Infinite-Dimensional Systems , 1995 .

[15]  D. Flamm,et al.  Numerical methods for H∞ control of distributed parameter systems , 1993 .

[16]  A. Tannenbaum,et al.  On the four block problem, II: The singular system , 1988 .

[17]  Allen Tannenbaum,et al.  Mixed-sensitivity optimization for a class of unstable infinite-dimensional systems , 1993 .

[18]  S. Mitter,et al.  H ∞ 0E Sensitivity Minimization for Delay Systems , 1987 .

[19]  D. Sarason Generalized interpolation in , 1967 .

[20]  Allen Tannenbaum,et al.  On the Four Block Problem, I , 1988 .

[21]  J. Ball,et al.  Sensitivity minimization in an H ∞ norm: parametrization of all suboptimal solutions , 1987 .

[22]  Caixing Gu On the optimal and suboptimal solutions of the mixed sensitivity problem , 1994 .

[23]  Malcolm C. Smith Singular values and vectors of a class of Hankel operators , 1989 .

[24]  Pramod P. Khargonekar,et al.  Four-block problem: stable plants and rational weights , 1989 .

[25]  Hong Yang,et al.  Numerical computation of H∞ optimal performance , 1992 .

[26]  P. Fuhrmann On the hamiltonian structure in the computation of singular values for a class of Hankel operators , 1991 .