Fast ignition with laser-driven proton and ion beams

Fusion fast ignition (FI) initiated by a laser-driven particle beam promises a path to high-yield and high-gain for inertial fusion energy. FI can readily leverage the proven capability of inertial confinement fusion (ICF) drivers, such as the National Ignition Facility, to assemble DT fusion fuel at the relevant high densities. FI provides a truly alternate route to ignition, independent of the difficulties with achieving the ignition hot spot in conventional ICF. FI by laser-driven ion beams provides attractive alternatives that sidestep the present difficulties with laser-driven electron-beam FI, while leveraging the extensive recent progress in generating ion beams with high-power density on existing laser facilities. Whichever the ion species, the ignition requirements are similar: delivering a power density ≈1022 W cm−3 (∼10 kJ in ≈20 ps within a volume of linear dimension ≈20 µm), to the DT fuel compressed to ∼400 g cm−3 with areal density ∼2 g cm−2. High-current, laser-driven beams of many ion species are promising candidates to deliver such high-power densities. The reason is that high energy, high-power laser drivers can deliver high-power fluxes that can efficiently make ion beams that are born neutralized in ∼fs–ps timescales, making them immune to the charge and current limits of conventional beams. In summary, we find that there are many possible paths to success with FI based on laser-driven ion beams. Although many ion species could be used for ignition, we concentrate here on either protons or C ions, which are technologically convenient species. We review the work to date on FI design studies with those species. We also review the tremendous recent progress in discovering, characterizing and developing many ion-acceleration mechanisms relevant to FI. We also summarize key recent technological advances and methods underwriting that progress. Based on the design studies and on the increased understanding of the physics of laser-driven ion acceleration, we provide laser and ion-generation laser-target design points based on several distinct ion-acceleration mechanisms.

[1]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[2]  T. Tajima,et al.  Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. , 2006, Physical review letters.

[3]  F. Pegoraro,et al.  Solitary versus shock wave acceleration in laser-plasma interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Brian James Albright,et al.  Relativistic Buneman instability in the laser breakout afterburner , 2007 .

[5]  Roy G. Hemker,et al.  Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions , 2015, 1503.00276.

[6]  Masaki Kando,et al.  High-energy ions from near-critical density plasmas via magnetic vortex acceleration. , 2010, Physical review letters.

[7]  T. Mehlhorn,et al.  Generation of laser-driven light ions suitable for fast ignition of fusion targets , 2011 .

[8]  Brian James Albright,et al.  Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets , 2007 .

[9]  A. Seifter,et al.  TRIDENT high-energy-density facility experimental capabilities and diagnostics. , 2008, The Review of scientific instruments.

[10]  J. Davies Proton acceleration by fast electrons in laser-solid interactions , 2002 .

[11]  R. Sagdeev,et al.  Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil , 2009 .

[12]  M. Shmatov Some Problems Related to Heating the Compressed Thermonuclear Fuel through the Cone , 2003 .

[13]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[14]  T. C. Sangster,et al.  High-power, kilojoule class laser channeling in millimeter-scale underdense plasma. , 2010, Physical review letters.

[15]  G. Shvets,et al.  Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil. , 2009, Physical review letters.

[16]  Michael Marti,et al.  Proton shock acceleration in laser-plasma interactions. , 2004, Physical review letters.

[17]  R. G. Evans,et al.  Radiation pressure acceleration of thin foils with circularly polarized laser pulses , 2007, 0708.2040.

[18]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[19]  B. Albright,et al.  Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition , 2011 .

[20]  M. Key,et al.  Proton trajectories and electric fields in a laser-accelerated focused proton beam , 2012 .

[21]  Michael H. Key,et al.  Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .

[22]  R. Fonseca,et al.  Laser-driven shock acceleration of monoenergetic ion beams. , 2011, Physical review letters.

[23]  Denavit Absorption of high-intensity subpicosecond lasers on solid density targets. , 1992, Physical review letters.

[24]  F. Pegoraro,et al.  Computer Simulation of the Three-Dimensional Regime of Proton Acceleration in the Interaction of Laser Radiation with a Thin Spherical Target , 2001 .

[25]  C. Labaune,et al.  Hole boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses. , 2009, Physical review letters.

[26]  V. Tikhonchuk,et al.  Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Farhat Beg,et al.  Electron and ion dynamics during the expansion of a laser-heated plasma under vacuum , 2012 .

[28]  Guy Schurtz,et al.  Fast ignitor target studies for the HiPER project , 2008 .

[29]  G. Miley,et al.  Hot spot heating process estimate using a laser-accelerated quasi-Maxwellian deuteron beam , 2012 .

[30]  Carlos Segovia Fernández,et al.  Fast ignition by quasimonoenergetic ion beams , 2013 .

[31]  Z. Sheng,et al.  Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. , 2008, Physical review letters.

[32]  Cattani,et al.  Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[34]  B. Shen,et al.  Efficient GeV ion generation by ultraintense circularly polarized laser pulse , 2007 .

[35]  John M. Dawson,et al.  Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas , 1970 .

[36]  S. V. Bulanov,et al.  Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications , 2006 .

[37]  J. F. L. Simmons,et al.  Was Marx right? or How efficient are laser driven interstellar spacecraft? , 1993 .

[38]  R. Ramis,et al.  Indirectly driven target design for fast ignition with proton beams , 2004 .

[39]  K. Bowers,et al.  Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets. , 2010, Physical review letters.

[41]  B. Albright,et al.  Progress on ion based fast ignition , 2008 .

[42]  Z. Sheng,et al.  Generation of High-Current Proton Beams With a Low Energy Spread by Phase-Stable Acceleration (PSA) , 2008, IEEE Transactions on Plasma Science.

[43]  L. Perkins,et al.  Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.

[44]  J. J. Honrubia,et al.  Fast ignition of fusion targets by laser-driven electrons , 2008, 0811.1760.

[45]  D. V. Rose,et al.  Simulation techniques for heavy ion fusion chamber transport , 2001 .

[46]  Mark S. Tillack,et al.  Direct drive target survival during injection in an inertial fusion energy power plant , 2002 .

[47]  B. Albright,et al.  Studies in capsule design for mid-Z ion-driven fast ignition , 2008 .

[48]  Brian James Albright,et al.  Progress and prospects of ion-driven fast ignition , 2009 .

[49]  M. Shmatov Factors determining the choice of the laser-accelerated ions for fast ignition , 2008 .

[50]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.

[51]  A. Scrinzi,et al.  Quantum coherence in the time-resolved Auger measurement. , 2003, Physical review letters.

[52]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[53]  R R Freeman,et al.  Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. , 2007, Physical review letters.

[54]  G I Dudnikova,et al.  Monoenergetic proton beams accelerated by a radiation pressure driven shock. , 2010, Physical review letters.

[55]  Matthew Zepf,et al.  The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers , 2004 .

[56]  C. Shonk,et al.  FORMATION AND STRUCTURE OF ELECTROSTATIC COLLISIONLESS SHOCKS. , 1970 .

[57]  John A. Nees,et al.  Numerical modeling of radiation-dominated and quantum-electrodynamically strong regimes of laser-plasma interaction , 2011, 1102.3685.

[58]  Vladimir T. Tikhonchuk,et al.  Modeling of radiation losses in ultrahigh power laser-matter interaction , 2012 .

[59]  S. Atzeni Thermonuclear Burn Performance of Volume-Ignited and Centrally Ignited Bare Deuterium-Tritium Microspheres , 1995 .

[60]  Marco Borghesi,et al.  Ion acceleration by superintense laser-plasma interaction , 2013, 1302.1775.

[61]  O. Buneman,et al.  Dissipation of Currents in Ionized Media , 1959 .

[62]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[63]  Brian J. Albright,et al.  Efficient carbon ion beam generation from laser-driven volume acceleration , 2013 .

[64]  Sandrine A. Gaillard,et al.  Focusing of short-pulse high-intensity laser-accelerated proton beams , 2011, Nature Physics.

[65]  M. Mahdavi,et al.  The interaction of quasi-monoenergetic protons with pre-compressed inertial fusion fuels , 2012 .

[66]  M. Kaluza,et al.  Comment on "Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma". , 2007, Physical Review Letters.

[67]  R. B. Ehrlich,et al.  Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. , 2012, Physical review letters.

[68]  M. Key,et al.  Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  V. Shiltsev High-energy particle colliders: past 20 years, next 20 years, and beyond , 2012, 1205.3087.

[70]  B. Albright,et al.  A novel high resolution ion wide angle spectrometer. , 2011, The Review of scientific instruments.

[71]  F. Pegoraro,et al.  Radiation pressure acceleration of ultrathin foils , 2010 .

[72]  T. Ditmire,et al.  High-energy ions produced in explosions of superheated atomic clusters , 1997, Nature.

[73]  Patrick Audebert,et al.  Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons , 2006, Science.

[74]  P. B. Radha,et al.  Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems , 2005 .

[75]  M. Key,et al.  Proton Fast Ignition , 2005 .

[76]  G. Kyrala,et al.  Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas , 2005 .

[77]  R. Sagdeev,et al.  Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration , 2011 .

[78]  D. Habs,et al.  Relativistic laser-matter interaction and relativistic laboratory astrophysics , 2008, 0812.1421.

[79]  A. Robinson Production of high energy protons with hole-boring radiation pressure accelerationa) , 2011 .

[80]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[81]  G. E. Lee,et al.  A Robotic System for High-Throughput-Rate Target Assembly , 2011 .

[82]  Fulvio Cornolti,et al.  Laser acceleration of ion bunches at the front surface of overdense plasmas. , 2005, Physical review letters.

[83]  D. Habs,et al.  Theory of laser ion acceleration from a foil target of nanometer thickness , 2010 .

[84]  H. Daido,et al.  Review of laser-driven ion sources and their applications , 2012, Reports on progress in physics. Physical Society.

[85]  J. J. Honrubia A synthetically accelerated scheme for radiative transfer calculations , 1993 .

[86]  Erik Lefebvre,et al.  Proton acceleration mechanisms in high-intensity laser interaction with thin foils , 2005 .

[87]  A. Macchi,et al.  Features of ion acceleration by circularly polarized laser pulses , 2007, 0705.4019.

[88]  Kokichi Tanaka,et al.  Initial cone-in-shell fast-ignition experiments on OMEGAa) , 2011 .

[89]  D. Melrose Reactive and resistive nonlinear instabilities , 1986, Journal of Plasma Physics.

[90]  Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  D W Litzenberg,et al.  Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Tsutomu Shimada,et al.  High-temporal contrast using low-gain optical parametric amplification. , 2009, Optics letters.

[93]  D. Clark,et al.  A self-similar isochoric implosion for fast ignition , 2005 .

[94]  B. Albright,et al.  Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas , 2012, Nature Physics.

[95]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[96]  R. J. Mason,et al.  An electromagnetic field algorithm for 2d implicit plasma simulation , 1987 .

[97]  V. Tikhonchuk,et al.  Effect of the laser pulse temporal shape on the hole boring efficiency , 2012 .

[98]  Tomasz Chodukowski,et al.  Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration , 2012 .

[99]  M. Key,et al.  Proton Focusing Characteristics Relevant to Fast Ignition , 2011, IEEE Transactions on Plasma Science.

[100]  K. A. Flippo,et al.  Characterization and focusing of light ion beams generated by ultra-intensely irradiated thin foils at the kilojoule scale a) , 2010 .

[101]  Y. Fujimoto,et al.  Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers , 2012 .

[102]  Brian J. Albright,et al.  Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime , 2013 .

[103]  T E Cowan,et al.  Isochoric heating of solid-density matter with an ultrafast proton beam. , 2003, Physical review letters.

[104]  J. Meyer-ter-Vehn,et al.  3D simulations of surface harmonic generation with few-cycle laser pulses , 2007 .

[105]  Vladimir Chvykov,et al.  Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. , 2008, Medical physics.

[106]  Hays,et al.  Nuclear fusion driven by coulomb explosions of large deuterium clusters , 2000, Physical review letters.

[107]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[108]  U Schramm,et al.  Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices. , 2008, Physical review letters.

[109]  M. Döbeli,et al.  Preparation and evaluation of thin diamond-like carbon foils for heavy-ion tandem accelerators and time-of-flight spectrometers , 1997 .

[110]  Andy J. Bayramian,et al.  Nd:Glass Laser Design for Laser ICF Fission Energy (LIFE) , 2009 .

[111]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[112]  G. MARX,et al.  Interstellar Vehicle Propelled By Terrestrial Laser Beam , 1966, Nature.

[113]  Brian James Albright,et al.  GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner , 2006 .

[114]  J. Badziak,et al.  Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure , 2010 .

[115]  Stefano Atzeni,et al.  Proton-beam driven fast ignition of inertially confined fuels: Reduction of the ignition energy by the use of two proton beams with radially shaped profiles , 2008 .

[116]  Marco Galimberti,et al.  The Vulcan 10 PW project , 2010 .

[117]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[118]  T. Sokollik,et al.  Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets , 2009, 0909.2334.

[119]  Arthur Nobile,et al.  A cost-effective target supply for inertial fusion energy , 2004 .

[120]  M. Borghesi,et al.  Focusing dynamics of high-energy density, laser-driven ion beams. , 2012, Physical review letters.

[121]  U Schramm,et al.  Electron temperature scaling in laser interaction with solids. , 2011, Physical review letters.

[122]  L. Gremillet,et al.  High-quality ion beams by irradiating a nano-structured target with a petawatt laser pulse , 2009, 0906.3972.

[123]  A. Nikroo,et al.  Fabrication, Injection, and Tracking of Fast Ignition Targets: Status and Future Prospects , 2006 .

[124]  J. Meyer-ter-Vehn,et al.  MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics , 1988 .

[125]  R. Stephens,et al.  Implosion of indirectly driven reentrant-cone shell target. , 2003, Physical review letters.

[126]  M. Yu,et al.  Improving proton acceleration with circularly polarized intense laser pulse by radial confinement with heavy ions , 2010 .

[127]  Stefano Atzeni,et al.  A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons , 2002 .

[128]  T. A. Mehlhorn,et al.  Integrated simulation of the generation and transport of proton beams from laser-target interaction , 2006 .

[129]  Andrea Favalli,et al.  Bright laser-driven neutron source based on the relativistic transparency of solids. , 2013, Physical review letters.

[130]  Patrick K. Rambo,et al.  Activation of the Z-petawatt laser at Sandia National Laboratories , 2008 .

[131]  D Kiefer,et al.  Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light. , 2011, Physical review letters.

[132]  J. Dawson Particle simulation of plasmas , 1983 .

[133]  Brian J. Albright,et al.  Break-out afterburner ion acceleration in the longer laser pulse length regime , 2011 .

[134]  Michael Geissler,et al.  Bubble acceleration of electrons with few-cycle laser pulses , 2006 .

[135]  P. Norreys,et al.  Dynamic control of laser-produced proton beams. , 2007, Physical review letters.

[136]  M. Geissel,et al.  Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. , 2003, Physical review letters.

[137]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[138]  K. Bowers,et al.  Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets , 2011 .

[139]  C. Capjack,et al.  Fast ignitor concept with light ions , 2001 .

[140]  Jack Dongarra,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[141]  R. Fonseca,et al.  Very high Mach-number electrostatic shocks in collisionless plasmas. , 2005, Physical review letters.

[142]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[143]  A. E. Dangor,et al.  A study of picosecond lasersolid interactions up to 1019 W cm-2 , 1997 .

[144]  K. Flippo,et al.  Laser acceleration of quasi-monoenergetic MeV ion beams , 2006, Nature.

[145]  W. Mori,et al.  Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction. , 2004, Physical review letters.

[146]  J. Meyer-ter-Vehn,et al.  Fast ignition of inertial fusion targets by laser-driven carbon beams , 2009, 0909.0342.

[147]  Jiri Limpouch,et al.  Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses , 2008 .

[148]  V A Gasilov,et al.  Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. , 2009, Physical review letters.

[149]  M. Key,et al.  ePLAS modeling of hot electron transport in nail-wire targets , 2010 .

[150]  T Shimada,et al.  Enhanced laser-driven ion acceleration in the relativistic transparency regime. , 2009, Physical review letters.

[151]  S. Atzeni,et al.  Fast ignition induced by shocks generated by laser-accelerated proton beams , 2009 .

[152]  R. Sagdeev,et al.  Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil , 2009 .

[153]  Chao Gong,et al.  Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams , 2011, Nature Physics.

[154]  F. Pegoraro,et al.  Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. , 2007, Physical review letters.

[155]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[156]  Kevin M. Guskiewicz,et al.  Introduction and Overview: 2 , 2008 .

[157]  Mikhail N. Polyanskiy,et al.  Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target a) , 2011 .

[158]  Paul Gibbon,et al.  Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses , 2009 .

[159]  G. Petrov,et al.  Finite spot effects on radiation pressure acceleration from intense high-contrast laser interactions with thin targets. , 2012, Physical review letters.

[160]  J P Blanchard,et al.  The Science and Technologies for Fusion Energy With Lasers and Direct-Drive Targets , 2010, IEEE Transactions on Plasma Science.

[161]  Peter Lang,et al.  High β plasmoid formation, drift and striations during pellet ablation in ASDEX Upgrade , 2002 .

[162]  M. Temporal Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams , 2006 .

[163]  Olivier Albert,et al.  10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. , 2005, Optics letters.

[164]  R. J. Mason,et al.  Hybrid Two-Dimensional Electron Transport in Self-Consistent Electromagnetic Fields , 1986, IEEE Transactions on Plasma Science.

[165]  J. W. Yoon,et al.  Improvement of contrast ratio in saturated OPCPA system by using pump pulse shaping and time delay control , 2012 .

[166]  D Kiefer,et al.  Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. , 2009, Physical review letters.

[167]  Heinrich Hora,et al.  Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target , 2011 .

[168]  R. Trines,et al.  Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches , 2012 .

[169]  S Meyroneinc,et al.  Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. , 2004, Physical review letters.

[170]  Vladimir T. Tikhonchuk,et al.  Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses , 2009 .

[171]  V. E. Sherman,et al.  Parameters of an ion beam and characteristic features of its slowing-down in a plasma during fast ignition of an inertial fusion target , 2010 .

[172]  Y. Ping,et al.  Observations of proton beam enhancement due to erbium hydride on gold foil targets , 2009 .

[173]  D. V. Sokolov,et al.  Ion acceleration in a dipole vortex in a laser plasma corona , 2005 .

[174]  Jan Badziak,et al.  Acceleration of a solid-density plasma projectile to ultrahigh velocities by a short-pulse ultraviolet laser , 2011 .

[175]  G. Malka,et al.  Experimental study of laser penetration in overdense plasmas at relativistic intensities. I: Hole boring through preformed plasmas layers , 1999 .

[176]  S. Slutz,et al.  Z-Pinch-Driven Fast Ignition Fusion , 2006 .

[177]  Jian Zheng,et al.  Laser generated proton beam focusing and high temperature isochoric heating of solid matter , 2007 .

[178]  V. Tikhonchuk,et al.  Cone-guided fast ignition with ponderomotively accelerated carbon ions , 2011 .

[179]  A double-foil target for improving beam quality in laser ion acceleration with thin foilsa) , 2011 .

[180]  D Neely,et al.  Ion acceleration in multispecies targets driven by intense laser radiation pressure. , 2012, Physical review letters.

[181]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[182]  Stefano Atzeni,et al.  Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams , 2002 .

[183]  M M Murnane,et al.  Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. , 1991, Optics letters.

[184]  Yuqiu Gu,et al.  Fast ignition by a laser-accelerated deuteron beam , 2011 .