Blast furnace slag-Mg(OH)2 cements activated by sodium carbonate

The structural evolution of a sodium carbonate activated slag cement blended with varying quantities of Mg(OH)2 was assessed. The main reaction products of these blended cements were a calcium-sodium aluminosilicate hydrate type gel, an Mg-Al layered double hydroxide with a hydrotalcite type structure, calcite, and a hydrous calcium aluminate phase (tentatively identified as a carbonate-containing AFm structure), in proportions which varied with Na2O/slag ratios. Particles of Mg(OH)2 do not chemically react within these cements. Instead, Mg(OH)2 acts as a filler accelerating the hardening of sodium carbonate activated slags. Although increased Mg(OH)2 replacement reduced the compressive strength of these cements, pastes with 50 wt% Mg(OH)2 still reached strengths of ∼21 MPa. The chemical and mechanical characteristics of sodium carbonate activated slag/Mg(OH)2 cements makes them a potentially suitable matrix for encapsulation of high loadings of Mg(OH)2-bearing wastes such as Magnox sludge.

[1]  John L. Provis,et al.  Alkali activation of a high MgO GGBS – fresh and hardened properties , 2018, Magazine of Concrete Research.

[2]  I. Richardson,et al.  Composition and structure of an 18-year-old 5M KOH-activated ground granulated blast-furnace slag paste , 2018 .

[3]  J. Provis,et al.  Phase Formation and Evolution in Mg(OH)2–Zeolite Cements , 2018 .

[4]  B. Lothenbach,et al.  Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H) , 2018 .

[5]  Xinyuan Ke,et al.  Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement , 2017 .

[6]  Rupert J. Myers,et al.  Phase diagrams for alkali-activated slag binders , 2017 .

[7]  Rebecca A. Sanderson,et al.  Comparison of calorimetric methods for the assessment of slag cement hydration , 2017 .

[8]  Susan A. Bernal,et al.  Advances in near-neutral salts activation of blast furnace slags , 2016 .

[9]  Xinyuan Ke,et al.  Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides , 2016 .

[10]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[11]  J. Provis,et al.  Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge. , 2015, Dalton transactions.

[12]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[13]  S. Bernal,et al.  Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders , 2015 .

[14]  B. Lothenbach,et al.  Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions , 2015 .

[15]  Karen L. Scrivener,et al.  Understanding the Filler Effect on the Nucleation and Growth of C-S-H , 2014 .

[16]  John L. Provis,et al.  Distinctive microstructural features of aged sodium silicate-activated slag concretes , 2014 .

[17]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[18]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[19]  A. Al-Tabbaa,et al.  Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste , 2014 .

[20]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[21]  S. Bernal,et al.  Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  Z. Bai,et al.  New synthetic route to Mg–Al–CO3 layered double hydroxide using magnesite , 2013 .

[23]  N. Hyatt,et al.  Technetium-99m Transport and Immobilisation in Porous Media: Development of a Novel Nuclear Imaging Technique , 2013 .

[24]  J. Génin,et al.  Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides , 2012, Mineralogical Magazine.

[25]  G. Saoût,et al.  Hydration Degree of Alkali-Activated Slags: A 29Si NMR Study , 2011 .

[26]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[27]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[28]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[29]  Neil B. Milestone,et al.  The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals , 2011 .

[30]  H. Pfeiffer,et al.  Cyanoethylation of alcohols by activated Mg–Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Brönsted basicity , 2011 .

[31]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[32]  M. Barsoum,et al.  Chemical and Microstructural Characterization of 20‐Month‐Old Alkali‐Activated Slag Cements , 2010 .

[33]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[34]  N. Collier,et al.  The encapsulation of Mg(OH)2 sludge in composite cement , 2010 .

[35]  R. Frost,et al.  Raman spectroscopic study of the magnesium-carbonate minerals - artinite and dypingite , 2009 .

[36]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[37]  Caijun Shi,et al.  Durability of alkali-activated cements and concretes , 2006 .

[38]  F. Glasser,et al.  Synthesis and characterisation of magnesium silicate hydrate gels , 2005 .

[39]  F. Meldrum,et al.  The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies , 2003 .

[40]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[41]  M. Sahimi,et al.  A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide , 2002 .

[42]  W. Nocuń-Wczelik,et al.  Heat Evolution in Hydrated Cementitious Systems Admixtured with Fly Ash , 2001 .

[43]  H. Panepucci,et al.  29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes , 2001 .

[44]  M. Kitamura Crystallization and Transformation Mechanism of Calcium Carbonate Polymorphs and the Effect of Magnesium Ion. , 2001, Journal of colloid and interface science.

[45]  R. Frost,et al.  Infrared emission spectroscopic study of brucite , 1999 .

[46]  L. Land Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .

[47]  A. Nonat,et al.  Characterization of Calcium Aluminate Hydrates and Related Hydrates of Cement Pastes by (27)Al MQ-MAS NMR. , 1998, Inorganic chemistry.

[48]  M. Böttcher,et al.  Characterization of inorganic and biogenic magnesian calcites by Fourier Transform infrared spectroscopy , 1997 .

[49]  J. Morse,et al.  Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater , 1997 .

[50]  C. A. Langton,et al.  Technetium Speciation in Cement Waste Forms Determined by X-ray Absorption Fine Structure Spectroscopy , 1997 .

[51]  K. Scrivener,et al.  Hydration products of alkali activated slag cement , 1995 .

[52]  T. Pinnavaia,et al.  Basic Properties of Mg2+1-xAl3+x Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions , 1995 .

[53]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[54]  C. Dobson,et al.  The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase , 1994 .

[55]  Fredrik P. Glasser,et al.  Application of portland cement-based materials to radioactive waste immobilization , 1992 .

[56]  L. M. Walter,et al.  The effects of PCO2 and temperature on magnesium incorporation in calcite in seawater and MgCl2-CaCl2 solutions , 1991 .

[57]  F. Andersen,et al.  Infrared spectra of amorphous and crystalline calcium carbonate , 1991 .

[58]  F. Seifert,et al.  The incommensurate-commensurate phase transition in akermanite, Ca2MgSi2O7, observed by in-situ 29Si MAS NMR spectroscopy , 1989 .

[59]  R. Fischer,et al.  Reinvestigation of the system C4A.nH2O C4A.Co2.nH2O , 1982 .

[60]  Shigeo Miyata The Syntheses of Hydrotalcite-Like Compounds and Their Structures and Physico-Chemical Properties—I: the Systems Mg2+-Al3+-NO3−, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO4−, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl− , 1975 .

[61]  Robert A. Berner,et al.  The role of magnesium in the crystal growth of calcite and aragonite from sea water , 1975 .

[62]  V. Farmer The Infrared spectra of minerals , 1974 .

[63]  C. K. HuaNc,et al.  Infrared study of the carbonate minerals , 1960 .