Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer

[1]  L. Gao,et al.  MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia , 2011, Oncogene.

[2]  C. Bracken,et al.  Experimental strategies for microRNA target identification , 2011, Nucleic acids research.

[3]  Chong-Jian Chen,et al.  Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing. , 2011, Genome research.

[4]  Michael Kaufmann,et al.  A systematic approach to the one-mode projection of bipartite graphs , 2011, Social Network Analysis and Mining.

[5]  Helen Wheeler,et al.  miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. , 2011, European journal of cancer.

[6]  Angela M. Liu,et al.  Two-tiered Approach Identifies a Network of Cancer and Liver Disease-related Genes Regulated by miR-122* , 2011, The Journal of Biological Chemistry.

[7]  Krishna R. Kalari,et al.  Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing , 2011, PloS one.

[8]  Stefan Wiemann,et al.  RNAi-based validation of antibodies for reverse phase protein arrays , 2010, Proteome Science.

[9]  A. Barker,et al.  Regulation of ErbB receptor signalling in cancer cells by microRNA. , 2010, Current opinion in pharmacology.

[10]  T. Down,et al.  Genome-Wide Identification of Targets and Function of Individual MicroRNAs in Mouse Embryonic Stem Cells , 2010, PLoS genetics.

[11]  S. Burma,et al.  Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. , 2010, Neoplasia.

[12]  J. Zhang,et al.  miR-200bc/429 cluster targets PLCγ1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer , 2010, Oncogene.

[13]  L. Liotta,et al.  Monitoring Proteins and Protein Networks Using Reverse Phase Protein Arrays , 2010, Disease markers.

[14]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[15]  Guanming Wu,et al.  A Viral microRNA Down-Regulates Multiple Cell Cycle Genes through mRNA 5′UTRs , 2010, PLoS pathogens.

[16]  J. Weinstein,et al.  mRNA and microRNA Expression Profiles of the NCI-60 Integrated with Drug Activities , 2010, Molecular Cancer Therapeutics.

[17]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[18]  Julia Schüler,et al.  The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs , 2009, Nature Cell Biology.

[19]  A. Børresen-Dale,et al.  Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines , 2009, Oncogene.

[20]  E. Abraham,et al.  miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses , 2009, Proceedings of the National Academy of Sciences.

[21]  R. Siebert,et al.  Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. , 2009, Cancer research.

[22]  X. Chen,et al.  Role of miR-143 targeting KRAS in colorectal tumorigenesis , 2009, Oncogene.

[23]  John S Mattick,et al.  Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7* , 2009, Journal of Biological Chemistry.

[24]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[25]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[26]  Holger Fröhlich,et al.  Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance , 2009, BMC Systems Biology.

[27]  M. Malumbres,et al.  Control of cell proliferation pathways by microRNAs , 2008, Cell cycle.

[28]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[29]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[30]  Haoming Zhang,et al.  miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes , 2008, Nucleic acids research.

[31]  Terry Hyslop,et al.  A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation , 2008, The Journal of cell biology.

[32]  R. Vibhakar,et al.  Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma , 2008, Journal of Neuro-Oncology.

[33]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[34]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[35]  Jae K. Lee,et al.  Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study , 2007, Molecular Cancer Therapeutics.

[36]  Richard A. Brualdi,et al.  Algorithms for constructing (0, 1)-matrices with prescribed row and column sum vectors , 2006, Discret. Math..

[37]  Robert Nadon,et al.  Statistical practice in high-throughput screening data analysis , 2006, Nature Biotechnology.

[38]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[39]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[40]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[41]  U. Schumacher,et al.  Reactivity of monoclonal antibodies directed against lung cancer antigens with human lung, breast and colon cancer cell lines. , 1993, Disease markers.

[42]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .