Frequency-independent equivalent circuit model for on-chip spiral inductors

A wide-band, physical and scalable 2-/spl Pi/ equivalent circuit model for on-chip spiral inductors is developed. Using frequency-independent RLC elements, it accurately captures R(f) and L(f) characteristics beyond the self-resonant frequency. This new model is fully compatible with both AC and transient analysis. Verification with measurement data demonstrates excellent scalability for a wide range of inductor configurations.

[1]  William B. Kuhn,et al.  Spiral inductor substrate loss modeling in silicon RF ICs , 1998, Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194).

[2]  Robert G. Meyer,et al.  Future directions in silicon ICs for RF personal communications , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[3]  D. Kossives,et al.  Investigation of current crowding effect on spiral inductors , 1997, 1997 IEEE MTT-S Symposium on Technologies for Wireless Applications Digest.

[4]  H. A. Wheeler Formulas for the Skin Effect , 1942, Proceedings of the IRE.

[5]  Shyh-Chyi Wong,et al.  Modeling of interconnect capacitance, delay, and crosstalk in VLSI , 2000 .

[6]  Stephen P. Boyd,et al.  Simple accurate expressions for planar spiral inductances , 1999, IEEE J. Solid State Circuits.

[7]  A. E. Ruehii Inductance Calculations in a Complex Integrated Circuit Environment , 2002 .

[8]  Josep Samitier,et al.  A physical frequency-dependent compact model for RF integrated inductors , 2002 .

[9]  N. M. Ibrahim,et al.  Analysis of current crowding effects in multiturn spiral inductors , 2001 .

[10]  D. Edelstein,et al.  RF circuit design aspects of spiral inductors on silicon , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[11]  W. R. Eisenstadt,et al.  High-speed VLSI interconnect modeling based on S-parameter measurements , 1993 .

[12]  D. P. Neikirk,et al.  Compact equivalent circuit model for the skin effect , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[13]  Yu Cao,et al.  Frequency-independent equivalent-circuit model for on-chip spiral inductors , 2003 .

[14]  S. Wong,et al.  Physical modeling of spiral inductors on silicon , 2000 .

[15]  C. Yue,et al.  On-chip Spiral Inductors With Patterned Ground Shields For Si-based RF IC's , 1997, Symposium 1997 on VLSI Circuits.

[16]  Brian Young Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages , 2000 .

[17]  H. Greenhouse,et al.  Design of Planar Rectangular Microelectronic Inductors , 1974 .

[18]  K. O. Kenneth,et al.  The effects of a ground shield on the characteristics and performance of spiral inductors , 2002, IEEE J. Solid State Circuits.

[19]  J. Long,et al.  The modeling, characterization, and design of monolithic inductors for silicon RF IC's , 1997, IEEE J. Solid State Circuits.

[20]  Albert E. Ruehli,et al.  Inductance calculations in a complex integrated circuit environment , 1972 .

[21]  Ali M. Niknejad,et al.  Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs , 1998, IEEE J. Solid State Circuits.

[22]  R. Groves,et al.  Temperature dependence of Q and inductance in spiral inductors fabricated in a silicon-germanium/BiCMOS technology , 1997, IEEE J. Solid State Circuits.

[23]  O. Kenneth,et al.  Estimation methods for quality factors of inductors fabricated in silicon integrated circuit process technologies , 1998, IEEE J. Solid State Circuits.

[24]  Ingo Wolff,et al.  CAD models of lumped elements on GaAs up to 18 GHz , 1988 .

[25]  K.K. O,et al.  A 1.24-GHz monolithic CMOS VCO with phase noise of -137 dBc/Hz at a 3-MHz offset , 1999, IEEE Microwave and Guided Wave Letters.