Thermal Conductivity of Diamond Composites

A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

[1]  B. Kieback,et al.  Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications , 2008 .

[2]  W. Jiajun,et al.  Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites , 2004 .

[3]  Q. Jiang,et al.  Size and temperature dependence of nanodiamond–nanographite transition related with surface stress , 2002 .

[4]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[5]  S. T. Lee,et al.  Measuring thermal conductivity of CVD diamond and diamond-like films on silicon substrates by holographic interferometry , 1999 .

[6]  Yoichiro Sato,et al.  Sintering behaviour of the diamond-cobalt system at high temperature and pressure , 1982 .

[7]  V. Davydov,et al.  Size-dependent nanodiamond-graphite phase transition at 8 GPa , 2007 .

[8]  Shiming Hong,et al.  High-Pressure Synthesis of Heat-Resistant Diamond Composite Using a Diamond-TiC0.6 Powder Mixture , 1999 .

[9]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .

[10]  N. H. Nam,et al.  High-pressure effect on dislocation density in nanosize diamond crystals , 2004 .

[11]  A. Ya. Vul,et al.  Thermal conductivity of sintered nanodiamonds and microdiamonds , 2008 .

[12]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[13]  Y. Gogotsi,et al.  Increase of nanodiamond crystal size by selective oxidation , 2008 .

[14]  Y. Miyamoto,et al.  Fabrication of New Cemented Carbide Containing Diamond Coated with Nanometer‐Sized SiC Particles , 2003 .

[15]  V. Gavrilova,et al.  Special features of sintering diamond powders of various dispersions at high pressures , 2007 .

[16]  L. Challis Kapitza resistance and acoustic transmission across boundaries at high frequencies , 1974 .

[17]  Yury Gogotsi,et al.  Effect of sintering on structure of nanodiamond , 2005 .

[18]  J. Gubicza,et al.  Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique , 2004 .

[19]  Helmut J. Böhm,et al.  Mori–Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions , 2008 .

[20]  J. Sung Graphite → diamond transition under high pressure: A kinetics approach , 2000 .

[21]  A. V. Kotko,et al.  Self-organization of ultradisperse diamond particles heated at high pressures , 2008 .

[22]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[23]  S. Thermal-Expansion Stresses in Reinforced Plastics , 2022 .

[24]  P. Ruch,et al.  Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium , 2006 .

[25]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[26]  Xinwei Wang,et al.  Thermal transport in nanocrystalline materials , 2006 .

[27]  A. Majumdar,et al.  Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion , 2005 .

[28]  H. Kanda Large diamonds grown at high pressure conditions , 2000 .

[29]  P. Vityaz,et al.  Compaction of nanodiamonds produced under detonation conditions and properties of composite and polycrystalline materials made on their basis , 2004 .

[30]  M. Akaishi,et al.  Synthesis of Fine‐Grained Polycrystalline Diamond Compact and Its Microstructure , 1991 .

[31]  C. Jia,et al.  Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance , 2009 .

[32]  C. Pantea,et al.  Graphitization of diamond powders of different sizes at high pressure–high temperature , 2004 .

[33]  Stephen R. Williams,et al.  Effect of particle shape on the density and microstructure of random packings , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  P. L. Kapitza,et al.  THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .

[35]  J. Lienhard A heat transfer textbook , 1981 .

[36]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[37]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[38]  D. Hasselman,et al.  Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance , 1987 .

[39]  J. Molina,et al.  Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles , 2008 .

[40]  M. Tai,et al.  Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure , 1997 .

[41]  J. Duda,et al.  Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials , 2009 .

[42]  V. D. Andreev,et al.  Spontaneous graphitization and thermal disintegration of diamond at T>2000 K , 1999 .

[43]  R. Abbaschian,et al.  High pressure–high temperature growth of diamond crystals using split sphere apparatus , 2005 .

[44]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .

[45]  G. Bulanova The formation of diamond , 1995 .

[46]  C. Pantea,et al.  High pressure study of graphitization of diamond crystals , 2002 .

[47]  A. Vul,et al.  The structure of diamond nanoclusters , 1999 .

[48]  Paul C. Millett,et al.  Phase-field simulation of thermal conductivity in porous polycrystalline microstructures , 2008 .

[49]  Orlando Auciello,et al.  Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films , 2006 .

[50]  V. Yu. Davydov,et al.  Diamond-graphite phase transition in ultradisperse-diamond clusters , 1997 .

[51]  Vladimir L. Kuznetsov,et al.  Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface , 1999 .

[52]  E. Lavernia,et al.  A comparison of techniques for determining the volume fraction of particulates in metal matrix composites , 1992 .

[53]  C. Pantea,et al.  Kinetics of SiC formation during high P–T reaction between diamond and silicon , 2005 .

[54]  J. R. Parrish,et al.  Packing of Spheres , 1961, Nature.

[55]  C. Jia,et al.  Spark plasma sintering of nitrogen-containing nickel-free stainless steel powders and effect of sintering temperature , 2009 .

[56]  G. Kennedy,et al.  The equilibrium boundary between graphite and diamond , 1976 .

[57]  S. Prabu,et al.  A finite element analysis study of micromechanical interfacial characteristics of metal matrix composites , 2004 .

[58]  J. Li,et al.  The size dependence of the diamond-graphite transition , 2000 .

[59]  C. Pantea,et al.  Dislocation density and graphitization of diamond crystals , 2002 .

[60]  L. Dubrovinsky,et al.  Nanocrystalline diamond synthesized from C60 , 2005 .

[61]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[62]  E. L. Gromnitskaya,et al.  Mechanical behavior and microstructure of nanodiamond-based composite materials , 2002 .

[63]  E. Mosunov,et al.  Physical-mechanical properties of nanocrystalline materials based on ultrafine-dispersed diamonds , 2004 .

[64]  P. Hopkins Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces , 2008 .

[65]  T. W. Żerda,et al.  Surface stress distribution in diamond crystals in diamond-silicon carbide composites , 2008 .

[66]  P. Uggowitzer,et al.  Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity , 2006 .

[67]  W. Tian,et al.  Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles , 2010 .

[68]  Sean Li,et al.  Size-Dependent Temperature−Pressure Phase Diagram of Carbon , 2008 .

[69]  A. A. Bochechka Effect of egassing on the formation of polycrystals from diamond nanopowders produced by detonation and static syntheses , 2004 .

[70]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[71]  D. Agrawal,et al.  Development of Titanium Coatings on Particulate Diamond , 2004 .

[72]  M. Akaishi,et al.  Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness , 1987 .

[73]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[74]  Ravi Prasher,et al.  Acoustic mismatch model for thermal contact resistance of van der Waals contacts , 2009 .

[75]  T. Yano,et al.  High pressure sintering of diamond-SiC composite , 2001 .

[76]  Katsuhito Yoshida,et al.  Thermal properties of diamond/copper composite material , 2004, Microelectron. Reliab..

[77]  R. Winholtz,et al.  Residual stresses in polycrystalline diamond compacts , 1999 .

[78]  R. Bradley High-Pressure Physics , 1965, Nature.

[79]  J. Molina,et al.  Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast , 2007 .

[80]  A. Ya. Vul,et al.  Thermal conductivity of nanocomposites based on diamonds and nanodiamonds , 2007 .

[81]  A. Sawaoka,et al.  Fracture Toughness of High-Pressure-Sintered Diamond/Silicon Nitride Composites , 1985 .

[82]  A. Sawaoka,et al.  Effect of Heat Treatment on Fracture Toughness of Alumina‐Diamond Composites Sintered at High Pressures , 1985 .

[83]  H. Böhm,et al.  Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites , 2007 .

[84]  Determination of thermal conductivity of CVD diamond films via photoacoustic measurements , 1999 .

[85]  V. Kuznetsov,et al.  Nanodiamond Graphitization and Properties of Onion-Like Carbon , 2005 .

[86]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[87]  Anthony,et al.  Measurements of the Kapitza conductance between diamond and several metals. , 1992, Physical review letters.

[88]  K. Suzuki,et al.  Growth of polycrystalline diamond , 1976 .

[89]  C. Pantea,et al.  Partial graphitization of diamond crystals under high-pressure and high-temperature conditions , 2001 .

[90]  Nikolay V. Suetin,et al.  Thermal conductivity of diamond composites sintered under high pressures , 2008 .

[91]  C. Pantea,et al.  Microstructure of diamond-SiC nanocomposites determined by X-ray line profile analysis , 2006 .

[92]  C. Pantea,et al.  Kinetics of the reaction between diamond and silicon at high pressure and temperature , 2005 .

[93]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[94]  L. Weber,et al.  On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites , 2007 .

[95]  N. Xu,et al.  Graphitization of nanodiamond powder annealed in argon ambient , 1999 .

[96]  Hong Guo,et al.  Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation , 2010 .