Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

[1]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[2]  S. Calero,et al.  Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks. , 2008, Physical chemistry chemical physics : PCCP.

[3]  Chongli Zhong,et al.  Molecular simulation of separation of CO2 from flue gases in CU‐BTC metal‐organic framework , 2007 .

[4]  Randall Q. Snurr,et al.  A new perspective on the order-n algorithm for computing correlation functions , 2009 .

[5]  Srinivasan Natarajan,et al.  Metal-organic framework structures--how closely are they related to classical inorganic structures? , 2009, Chemical Society reviews.

[6]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[7]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[8]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[9]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[10]  Jianwen Jiang,et al.  A bio-metal-organic framework for highly selective CO(2) capture: A molecular simulation study. , 2010, ChemSusChem.

[11]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[12]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[13]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[14]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[16]  A. Ghoufi,et al.  Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr). , 2009, Angewandte Chemie.

[17]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[18]  Chongli Zhong,et al.  Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study , 2008 .

[19]  Jianwen Jiang,et al.  Molecular screening of metal-organic frameworks for CO2 storage. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[21]  Rajamani Krishna,et al.  Transferable force field for carbon dioxide adsorption in zeolites , 2009 .

[22]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[24]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[25]  W. Marsden I and J , 2012 .

[26]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[27]  F. Corà,et al.  Sorption-Induced Breathing in the Flexible Metal Organic Framework CrMIL-53: Force-Field Simulations and Electronic Structure Analysis , 2009 .

[28]  C. Serre,et al.  Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments , 2007 .

[29]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[30]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[31]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[32]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[33]  Sofia Calero,et al.  Functionalisation of MOF open metal sites with pendant amines for CO2 capture , 2012 .

[34]  A. Ghoufi,et al.  Comparative guest, thermal, and mechanical breathing of the porous metal organic framework MIL-53(Cr): A computational exploration supported by experiments , 2012 .

[35]  A. Ghoufi,et al.  Molecular Insight into the Adsorption of H2S in the Flexible MIL-53(Cr) and Rigid MIL-47(V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations , 2011 .

[36]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[37]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[38]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[39]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[40]  Rajamani Krishna,et al.  Incorporating the Loading Dependence of the Maxwell-Stefan Diffusivity in the Modeling of CH4 and CO2 Permeation Across Zeolite Membranes , 2007 .

[41]  C. Serre,et al.  Diffusion of Binary CO2/CH4 Mixtures in the MIL-47(V) and MIL-53(Cr) Metal–Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations , 2013 .

[42]  M. Pera‐Titus,et al.  Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53 , 2012 .

[43]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[44]  David S. Sholl,et al.  Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations , 2007 .

[45]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[46]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[47]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[48]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[49]  Qingyuan Yang,et al.  Computational Study of CO2 Storage in Metal-Organic Frameworks , 2008 .

[50]  A. Chaffee,et al.  Modeling gas separation in metal-organic frameworks , 2011 .

[51]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[52]  R. Krishna,et al.  Diffusion of CH4 and CO2 in MFI, CHA and DDR zeolites , 2006 .

[53]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[54]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[55]  Anthony K. Cheetham,et al.  There's Room in the Middle , 2007, Science.

[56]  M. Pera‐Titus,et al.  Homogeneity of flexible metal–organic frameworks containing mixed linkers , 2012 .

[57]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[58]  F. Kapteijn,et al.  High compressibility of a flexible metal–organic framework , 2012 .

[59]  Bernard Delley,et al.  FAST CALCULATION OF ELECTROSTATICS IN CRYSTALS AND LARGE MOLECULES , 1996 .

[60]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[61]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[62]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  G. Férey,et al.  Charge distribution in metal organic framework materials: transferability to a preliminary molecular simulation study of the CO(2) adsorption in the MIL-53 (Al) system. , 2007, Physical chemistry chemical physics : PCCP.

[65]  Chongli Zhong,et al.  Comparative Study of Separation Performance of COFs and MOFs for CH4/CO2/H2 Mixtures , 2010 .

[66]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[67]  Chongli Zhong,et al.  Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.